k8s-手动安装
预先准备信息
以下列节点数与规格来进行部署 Kubernetes 集群,操作系统CentOS 7.x
IP Address | Role | CPU | Memory |
192.168.2.10 | node10 | 4 | 8G |
192.168.2.105 | node105 | 2 | 2G |
192.168.2.106 | node106 | 2 | 2G |
- 这边 master 为主要控制节点也是部署节点,node 为应用程序工作节点。
- 所有操作全部用root使用者进行,以 SRE 来说不推荐。
首先安装前要确认以下几项都已将准备完成:
- 所有节点彼此网络互通,并且node10 SSH 登入其他节点为 passwdless。
- 所有防火墙与 SELinux 已关闭。如 CentOS:
$ systemctl stop firewalld && systemctl disable firewalld
$ setenforce 0
$ vim /etc/selinux/config
SELINUX=disabled 所有节点需要设定/etc/host解析到所有主机。
...
192.168.2.105 node105
192.168.2.106 node106
192.168.2.10 node10 所有节点需要安装Docker。这边采用Docker来当作容器引擎,安装方式如下:
$ curl -fsSL "https://get.docker.com/" | sh
不管是在 Ubuntu 或 CentOS 都只需要执行该指令就会自动安装最新版 Docker。
CentOS 安装完成后,需要再执行以下指令:$ systemctl enable docker && systemctl start docker
编辑/lib/systemd/system/docker.service,在ExecStart=..上面加入:
ExecStartPost=/sbin/iptables -I FORWARD -s 0.0.0.0/0 -j ACCEPT
完成后,重新启动 docker 服务:
$ systemctl daemon-reload && systemctl restart docker
所有节点需要设定/etc/sysctl.d/k8s.conf的系统参数。
$ cat <<EOF > /etc/sysctl.d/k8s.conf
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF $ sysctl -p /etc/sysctl.d/k8s.conf 在master1需要安装CFSSL工具,这将会用来建立 TLS certificates。
$ export CFSSL_URL="https://pkg.cfssl.org/R1.2"
$ wget "${CFSSL_URL}/cfssl_linux-amd64" -O /usr/local/bin/cfssl
$ wget "${CFSSL_URL}/cfssljson_linux-amd64" -O /usr/local/bin/cfssljson
$ chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson
Etcd
在开始安装 Kubernetes 之前,需要先将一些必要系统创建完成,其中 Etcd 就是 Kubernetes 最重要的一环,Kubernetes 会将大部分信息储存于 Etcd 上,来提供给其他节点索取,以确保整个集群运作与沟通正常。
创建集群 CA 与 Certificates
在这部分,将会需要产生 client 与 server 的各组件 certificates,并且替 Kubernetes admin user 产生 client 证书。
建立/etc/etcd/ssl文件夹,然后进入目录完成以下操作。
$ mkdir -p /etc/etcd/ssl && cd /etc/etcd/ssl
$ export PKI_URL="https://kairen.github.io/files/manual-v1.8/pki"
下载ca-config.json与etcd-ca-csr.json文件,并产生 CA 密钥:
$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/etcd-ca-csr.json"
$ cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare etcd-ca
$ ls etcd-ca*.pem
etcd-ca-key.pem etcd-ca.pem
下载etcd-csr.json文件,并产生 kube-apiserver certificate 证书:
$ wget "${PKI_URL}/etcd-csr.json"
$cat etcd-csr.json
{"CN":"etcd","hosts":["127.0.0.1","192.168.2.10"],"key":{"algo":"rsa","size":2048},"names":[{"C":"TW","ST":"Taipei","L":"Taipei","O":"etcd","OU":"Etcd Security"}]}
若节点 IP 不同,需要修改etcd-csr.json的hosts。
$ cfssl gencert \
-ca=etcd-ca.pem \
-ca-key=etcd-ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
etcd-csr.json | cfssljson -bare etcd $ ls etcd*.pem
etcd-ca-key.pem etcd-ca.pem etcd-key.pem etcd.pe
完成后删除不必要文件:
$ rm -rf *.json
确认/etc/etcd/ssl有以下文件:
$ ls /etc/etcd/ssl
etcd-ca.csr etcd-ca-key.pem etcd-ca.pem etcd.csr etcd-key.pem etcd.pem
Etcd 安装与设定
首先在master1节点下载 Etcd,并解压缩放到 /opt 底下与安装:
$ export ETCD_URL="https://github.com/coreos/etcd/releases/download"
$ cd
$ wget ${ETCD_URL}/v3.2.9/etcd-v3.2.9-linux-amd64.tar.gz
$ tar -zxvf etcd-v3.2.9-linux-amd64.tar.gz
$ mv etcd-v3.2.9-linux-amd64/etcd* /usr/local/bin/
$ rm -rf etcd-v3.2.9-linux-amd64
完成后新建 Etcd Group 与 User,并建立 Etcd 配置文件目录:
$ groupadd etcd && useradd -c "Etcd user" -g etcd -s /sbin/nologin -r etcd
下载etcd相关文件,我们将来管理 Etcd:
$ export ETCD_CONF_URL="https://kairen.github.io/files/manual-v1.8/master"
$ wget "${ETCD_CONF_URL}/etcd.conf" -O /etc/etcd/etcd.conf
$ wget "${ETCD_CONF_URL}/etcd.service" -O /lib/systemd/system/etcd.service
# cat /etc/etcd/etcd.conf
# [cluster]
ETCD_ADVERTISE_CLIENT_URLS=https://192.168.2.10:2379
ETCD_INITIAL_ADVERTISE_PEER_URLS=https://192.168.2.10:2380
ETCD_INITIAL_CLUSTER=master1=https://192.168.2.10:2380
ETCD_INITIAL_CLUSTER_STATE=new
ETCD_INITIAL_CLUSTER_TOKEN=etcd-k8s-cluster
建立 var 存放信息,然后启动 Etcd 服务:
$ mkdir -p /var/lib/etcd && chown etcd:etcd -R /var/lib/etcd /etc/etcd
$ systemctl enable etcd.service && systemctl start etcd.service
通过简单指令验证:
$ export CA="/etc/etcd/ssl"
$ ETCDCTL_API=3 /usr/local/bin/etcdctl \
--cacert=${CA}/etcd-ca.pem \
--cert=${CA}/etcd.pem \
--key=${CA}/etcd-key.pem \
--endpoints="https://192.168.2.10:2379" \
endpoint health
# output
https://192.168.2.10:2379 is healthy: successfully committed proposal: took = 641.36µs
etcd安装完成 扩展CFSSL安装:
这里我们只用到cfssl
工具和cfssljson
工具:
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
chmod +x cfssl_linux-amd64 cfssljson_linux-amd64 cfssl-certinfo_linux-amd64
mv cfssl_linux-amd64 /usr/local/bin/cfssl
mv cfssljson_linux-amd64 /usr/local/bin/cfssljson
mv cfssl-certinfo_linux-amd64 /usr/bin/cfssl-certinfo
Kubernetes Master
Master 是 Kubernetes 的大总管,主要创建apiserver、Controller manager与Scheduler来组件管理所有 Node。本步骤将下载 Kubernetes 并安装至 node10上,然后产生相关 TLS Cert 与 CA 密钥,提供给集群组件认证使用。
下载 Kubernetes 组件
首先通过网络取得所有需要的执行文件:
# Download Kubernetes
$ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.8.2/bin/linux/amd64"
$ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet
$ wget "${KUBE_URL}/kubectl" -O /usr/local/bin/kubectl
$ chmod +x /usr/local/bin/kubelet /usr/local/bin/kubectl # Download CNI
$ mkdir -p /opt/cni/bin && cd /opt/cni/bin
$ export CNI_URL="https://github.com/containernetworking/plugins/releases/download"
$ wget "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz"
$ tar -zxvf cni-plugins-amd64-v0.6.0.tgz
创建集群 CA 与 Certificates
在这部分,将会需要生成 client 与 server 的各组件 certificates,并且替 Kubernetes admin user 生成 client 证书。
创建pki文件夹,然后进入目录完成以下操作。
$ mkdir -p /etc/kubernetes/pki && cd /etc/kubernetes/pki
$ export PKI_URL="https://kairen.github.io/files/manual-v1.8/pki"
$ export KUBE_APISERVER="https://192.168.2.10:6443"
下载ca-config.json与ca-csr.json文件,并生成 CA 密钥:
$ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/ca-csr.json"
$ cfssl gencert -initca ca-csr.json | cfssljson -bare ca
$ ls ca*.pem
ca-key.pem ca.pem
API server certificate
下载apiserver-csr.json文件,并生成 kube-apiserver certificate 证书:
$ wget "${PKI_URL}/apiserver-csr.json"
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-hostname=192.168.2.10,127.0.0.1,kubernetes.default \
-profile=kubernetes \
apiserver-csr.json | cfssljson -bare apiserver $ ls apiserver*.pem
apiserver-key.pem apiserver.pem
若节点 IP 不同,需要修改apiserver-csr.json的hosts。
Front proxy certificate
下载front-proxy-ca-csr.json文件,并生成 Front proxy CA 密钥,Front proxy 主要是用在 API aggregator 上:
$ wget "${PKI_URL}/front-proxy-ca-csr.json"
$ cfssl gencert \
-initca front-proxy-ca-csr.json | cfssljson -bare front-proxy-ca $ ls front-proxy-ca*.pem
front-proxy-ca-key.pem front-proxy-ca.pem
下载front-proxy-client-csr.json文件,并生成 front-proxy-client 证书:
$ wget "${PKI_URL}/front-proxy-client-csr.json"
$ cfssl gencert \
-ca=front-proxy-ca.pem \
-ca-key=front-proxy-ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
front-proxy-client-csr.json | cfssljson -bare front-proxy-client $ ls front-proxy-client*.pem
front-proxy-client-key.pem front-proxy-client.pem
Bootstrap Token
由于通过手动创建 CA 方式太过繁杂,只适合少量机器,因为每次签证时都需要绑定 Node IP,随机器增加会带来很多困扰,因此这边使用 TLS Bootstrapping 方式进行授权,由 apiserver 自动给符合条件的 Node 发送证书来授权加入集群。
主要做法是 kubelet 启动时,向 kube-apiserver 传送 TLS Bootstrapping 请求,而 kube-apiserver 验证 kubelet 请求的 token 是否与设定的一样,若一样就自动产生 kubelet 证书与密钥。具体作法可以参考 TLS bootstrapping。
首先建立一个变量来产生BOOTSTRAP_TOKEN,并建立 bootstrap.conf 的 kubeconfig 文件:
$ export BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
$ cat <<EOF > /etc/kubernetes/token.csv
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF # bootstrap set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=../bootstrap.conf # bootstrap set-credentials
$ kubectl config set-credentials kubelet-bootstrap \
--token=${BOOTSTRAP_TOKEN} \
--kubeconfig=../bootstrap.conf # bootstrap set-context
$ kubectl config set-context default \
--cluster=kubernetes \
--user=kubelet-bootstrap \
--kubeconfig=../bootstrap.conf # bootstrap set default context
$ kubectl config use-context default --kubeconfig=../bootstrap.conf
若想要用 CA 方式来认证,可以参考 Kubelet certificate。
Admin certificate
下载admin-csr.json文件,并生成 admin certificate 证书:
$ wget "${PKI_URL}/admin-csr.json"
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
admin-csr.json | cfssljson -bare admin $ ls admin*.pem
admin-key.pem admin.pem
接着通过以下指令生成名称为 admin.conf 的 kubeconfig 文件:
# admin set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=../admin.conf # admin set-credentials
$ kubectl config set-credentials kubernetes-admin \
--client-certificate=admin.pem \
--client-key=admin-key.pem \
--embed-certs=true \
--kubeconfig=../admin.conf # admin set-context
$ kubectl config set-context kubernetes-admin@kubernetes \
--cluster=kubernetes \
--user=kubernetes-admin \
--kubeconfig=../admin.conf # admin set default context
$ kubectl config use-context kubernetes-admin@kubernetes \
--kubeconfig=../admin.conf
Controller manager certificate
下载manager-csr.json文件,并生成 kube-controller-manager certificate 证书:
$ wget "${PKI_URL}/manager-csr.json"
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
manager-csr.json | cfssljson -bare controller-manager $ ls controller-manager*.pem
若节点 IP 不同,需要修改manager-csr.json的hosts。
接着通过以下指令生成名称为controller-manager.conf的 kubeconfig 文件:
# controller-manager set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=../controller-manager.conf # controller-manager set-credentials
$ kubectl config set-credentials system:kube-controller-manager \
--client-certificate=controller-manager.pem \
--client-key=controller-manager-key.pem \
--embed-certs=true \
--kubeconfig=../controller-manager.conf # controller-manager set-context
$ kubectl config set-context system:kube-controller-manager@kubernetes \
--cluster=kubernetes \
--user=system:kube-controller-manager \
--kubeconfig=../controller-manager.conf # controller-manager set default context
$ kubectl config use-context system:kube-controller-manager@kubernetes \
--kubeconfig=../controller-manager.conf
Scheduler certificate
下载scheduler-csr.json文件,并生成 kube-scheduler certificate 证书:
$ wget "${PKI_URL}/scheduler-csr.json"
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
scheduler-csr.json | cfssljson -bare scheduler $ ls scheduler*.pem
scheduler-key.pem scheduler.pem
若节点 IP 不同,需要修改scheduler-csr.json的hosts。
接着通过以下指令生成名称为 scheduler.conf 的 kubeconfig 文件:
# scheduler set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=../scheduler.conf # scheduler set-credentials
$ kubectl config set-credentials system:kube-scheduler \
--client-certificate=scheduler.pem \
--client-key=scheduler-key.pem \
--embed-certs=true \
--kubeconfig=../scheduler.conf # scheduler set-context
$ kubectl config set-context system:kube-scheduler@kubernetes \
--cluster=kubernetes \
--user=system:kube-scheduler \
--kubeconfig=../scheduler.conf # scheduler set default context
$ kubectl config use-context system:kube-scheduler@kubernetes \
--kubeconfig=../scheduler.conf
Kubelet master certificate
下载kubelet-csr.json文件,并生成 master node certificate 证书:
$ wget "${PKI_URL}/kubelet-csr.json"
$ sed -i 's/$NODE/node10/g' kubelet-csr.json
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-hostname=node10,192.168.2.10 \
-profile=kubernetes \
kubelet-csr.json | cfssljson -bare kubelet $ ls kubelet*.pem
kubelet-key.pem kubelet.pem
这边$NODE需要随节点名称不同而改变。
接着通过以下指令生成名称为 kubelet.conf 的 kubeconfig 文件:
# kubelet set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=../kubelet.conf # kubelet set-credentials
$ kubectl config set-credentials system:node:node10 \
--client-certificate=kubelet.pem \
--client-key=kubelet-key.pem \
--embed-certs=true \
--kubeconfig=../kubelet.conf # kubelet set-context
$ kubectl config set-context system:node:node10@kubernetes \
--cluster=kubernetes \
--user=system:node:node10 \
--kubeconfig=../kubelet.conf # kubelet set default context
$ kubectl config use-context system:node:node10@kubernetes \
--kubeconfig=../kubelet.conf
Service account key
Service account 不是通过 CA 进行认证,因此不要通过 CA 来做 Service account key 的检查,这边建立一组 Private 与 Public 密钥提供给 Service account key 使用:
$ openssl genrsa -out sa.key 2048
$ openssl rsa -in sa.key -pubout -out sa.pub
$ ls sa.*
sa.key sa.pub
完成后删除不必要文件:
$ rm -rf *.json *.csr
安装 Kubernetes 核心组件
首先下载 Kubernetes 核心组件 YAML 文件,这边我们不透过 Binary 方案来创建 Master 核心组件,而是利用 Kubernetes Static Pod 来创建,因此需下载所有核心组件的Static Pod文件到/etc/kubernetes/manifests目录:
$ export CORE_URL="https://kairen.github.io/files/manual-v1.8/master"
$ mkdir -p /etc/kubernetes/manifests && cd /etc/kubernetes/manifests
$ for FILE in apiserver manager scheduler; do
wget "${CORE_URL}/${FILE}.yml.conf" -O ${FILE}.yml
done
请记得修改apiserver.yml、manager.yml、scheduler.yml。
apiserver 中的 NodeRestriction 请参考 Using Node Authorization。
生成一个用来加密 Etcd 的 Key:
$ head -c 32 /dev/urandom | base64
SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
在/etc/kubernetes/目录下,创建encryption.yml的加密 YAML 文件:
$ cat <<EOF > /etc/kubernetes/encryption.yml
kind: EncryptionConfig
apiVersion: v1
resources:
- resources:
- secrets
providers:
- aescbc:
keys:
- name: key1
secret: SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
- identity: {}
EOF
Etcd 数据加密可参考这篇 Encrypting data at rest。
在/etc/kubernetes/目录下,创建audit-policy.yml的进阶审核策略 YAML 文件:
$ cat <<EOF > /etc/kubernetes/audit-policy.yml
apiVersion: audit.k8s.io/v1beta1
kind: Policy
rules:
- level: Metadata
EOF
Audit Policy 请参考这篇 Auditing。
下载kubelet.service相关文件来管理 kubelet:
$ export KUBELET_URL="https://kairen.github.io/files/manual-v1.8/master"
$ mkdir -p /etc/systemd/system/kubelet.service.d
$ wget "${KUBELET_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
$ wget "${KUBELET_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
修改/etc/systemd/system/kubelet.service.d/10-kubelet.conf的DNS参数
最后创建 var 存放信息,然后启动 kubelet 服务:
$ mkdir -p /var/lib/kubelet /var/log/kubernetes
$ systemctl enable kubelet.service && systemctl start kubelet.service
完成后会需要一段时间来下载镜像文件与启动组件,可以利用该指令来查看:
$ watch netstat -ntlp
tcp 0 0 127.0.0.1:10248 0.0.0.0:* LISTEN 23012/kubelet
tcp 0 0 127.0.0.1:10251 0.0.0.0:* LISTEN 22305/kube-schedule
tcp 0 0 127.0.0.1:10252 0.0.0.0:* LISTEN 22529/kube-controll
tcp6 0 0 :::6443 :::* LISTEN 22956/kube-apiserve
若看到以上信息表示服务正常启动,若发生问题可以用docker cli来查看。
完成后,复制 admin kubeconfig 文件,并通过简单指令验证:
$ cp /etc/kubernetes/admin.conf ~/.kube/config
$ kubectl get cs
NAME STATUS MESSAGE ERROR
etcd-0 Healthy {"health": "true"}
scheduler Healthy ok
controller-manager Healthy ok $ kubectl get node
NAME STATUS ROLES AGE VERSION
master1 NotReady master 4m v1.8.2 $ kubectl -n kube-system get po
NAME READY STATUS RESTARTS AGE
kube-apiserver-master1 1/1 Running 0 4m
kube-controller-manager-master1 1/1 Running 0 4m
kube-scheduler-master1 1/1 Running 0 4m
确认服务能够执行 logs 等指令:
$ kubectl -n kube-system logs -f kube-scheduler-master1
Error from server (Forbidden): Forbidden (user=kube-apiserver, verb=get, resource=nodes, subresource=proxy) ( pods/log kube-apiserver-master1)
这边会发现出现 403 Forbidden 问题,这是因为 kube-apiserver user 并没有 nodes 的资源权限,属于正常。
由于上述权限问题,我们必需创建一个 apiserver-to-kubelet-rbac.yml 来定义权限,以供我们执行 logs、exec 等指令:
$ cd /etc/kubernetes/
$ export URL="https://kairen.github.io/files/manual-v1.8/master"
$ wget "${URL}/apiserver-to-kubelet-rbac.yml.conf" -O apiserver-to-kubelet-rbac.yml
$ kubectl apply -f apiserver-to-kubelet-rbac.yml # 測試 logs
$ kubectl -n kube-system logs -f kube-scheduler-master1
...
I1031 03:22:42.527697 1 leaderelection.go:184] successfully acquired lease kube-system/kube-scheduler
Kubernetes Node
Node 是主要执行容器实例的节点,可视为工作节点。在这步骤我们会下载 Kubernetes binary 文件,并创建 node 的 certificate 来提供给节点注册认证用。Kubernetes 使用Node Authorizer来提供Authorization mode,这种授权模式会替 Kubelet 生成 API request。
在开始前,我们先在master1将需要的 ca 与 cert 复制到 Node 节点上:
$ for NODE in node1 node2; do
ssh ${NODE} "mkdir -p /etc/kubernetes/pki/"
ssh ${NODE} "mkdir -p /etc/etcd/ssl"
# Etcd ca and cert
for FILE in etcd-ca.pem etcd.pem etcd-key.pem; do
scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE}
done
# Kubernetes ca and cert
for FILE in pki/ca.pem pki/ca-key.pem bootstrap.conf; do
scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
done
done node105,node106:
首先通过网络取得所有需要的执行文件:
# Download Kubernetes
$ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.8.2/bin/linux/amd64"
$ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet
$ chmod +x /usr/local/bin/kubelet # Download CNI
$ mkdir -p /opt/cni/bin && cd /opt/cni/bin
$ export CNI_URL="https://github.com/containernetworking/plugins/releases/download"
$ wget "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz"
$ tar -zxvf cni-plugins-amd64-v0.6.0.tgz
设定 Kubernetes node
接着下载 Kubernetes 相关文件,包含 drop-in file、systemd service 档案等:
$ export KUBELET_URL="https://kairen.github.io/files/manual-v1.8/node"
$ mkdir -p /etc/systemd/system/kubelet.service.d
$ wget "${KUBELET_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
$ wget "${KUBELET_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
接着在所有node创建 var 存放信息,然后启动 kubelet 服务:
$ mkdir -p /var/lib/kubelet /var/log/kubernetes /etc/kubernetes/manifests
$ systemctl enable kubelet.service && systemctl start kubelet.service
P.S. 重复一样动作来完成其他节点。
授权 Kubernetes Node
当所有节点都完成后,在master节点,因为我们采用 TLS Bootstrapping,所需要创建一个 ClusterRoleBinding:
$ kubectl create clusterrolebinding kubelet-bootstrap \
--clusterrole=system:node-bootstrapper \
--user=kubelet-bootstrap
在master通过简单指令验证,会看到节点处于pending:
$ kubectl get csr
NAME AGE REQUESTOR CONDITION
node-csr-YWf97ZrLCTlr2hmXsNLfjVLwaLfZRsu52FRKOYjpcBE 2s kubelet-bootstrap Pending
node-csr-eq4q6ffOwT4yqYQNU6sT7mphPOQdFN6yulMVZeu6pkE 2s kubelet-bootstrap Pending
通过 kubectl 来允许节点加入集群:
$ kubectl get csr | awk '/Pending/ {print $1}' | xargs kubectl certificate approve
certificatesigningrequest "node-csr-YWf97ZrLCTlr2hmXsNLfjVLwaLfZRsu52FRKOYjpcBE" approved
certificatesigningrequest "node-csr-eq4q6ffOwT4yqYQNU6sT7mphPOQdFN6yulMVZeu6pkE" approved $ kubectl get csr
NAME AGE REQUESTOR CONDITION
node-csr-YWf97ZrLCTlr2hmXsNLfjVLwaLfZRsu52FRKOYjpcBE 30s kubelet-bootstrap Approved,Issued
node-csr-eq4q6ffOwT4yqYQNU6sT7mphPOQdFN6yulMVZeu6pkE 30s kubelet-bootstrap Approved,Issued $ kubectl get no
NAME STATUS ROLES AGE VERSION
master1 NotReady master 15m v1.8.2
node1 NotReady <none> 8m v1.8.2
node2 NotReady <none> 6s v1.8.2
Kubernetes Core Addons 部署
当完成上面所有步骤后,接着我们需要安装一些插件,而这些有部分是非常重要跟好用的,如Kube-dns与Kube-proxy等。
Kube-proxy addon
Kube-proxy 是实现 Service 的关键组件,kube-proxy 会在每台节点上执行,然后监听 API Server 的 Service 与 Endpoint 资源对象的改变,然后来依据变化执行 iptables 来实现网络的转发。这边我们会需要建议一个 DaemonSet 来执行,并且创建一些需要的 certificate。Kubernetes 1.8 kube-proxy 开启 ipvs
首先在master1下载kube-proxy-csr.json文件,并产生 kube-proxy certificate 证书:
$ export PKI_URL="https://kairen.github.io/files/manual-v1.8/pki"
$ cd /etc/kubernetes/pki
$ wget "${PKI_URL}/kube-proxy-csr.json" "${PKI_URL}/ca-config.json"
$ cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
kube-proxy-csr.json | cfssljson -bare kube-proxy $ ls kube-proxy*.pem
kube-proxy-key.pem kube-proxy.pem
接着透过以下指令生成名称为 kube-proxy.conf 的 kubeconfig 文件:
# kube-proxy set-cluster
$ kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server="https://172.16.35.12:6443" \
--kubeconfig=../kube-proxy.conf # kube-proxy set-credentials
$ kubectl config set-credentials system:kube-proxy \
--client-key=kube-proxy-key.pem \
--client-certificate=kube-proxy.pem \
--embed-certs=true \
--kubeconfig=../kube-proxy.conf # kube-proxy set-context
$ kubectl config set-context system:kube-proxy@kubernetes \
--cluster=kubernetes \
--user=system:kube-proxy \
--kubeconfig=../kube-proxy.conf # kube-proxy set default context
$ kubectl config use-context system:kube-proxy@kubernetes \
--kubeconfig=../kube-proxy.conf
完成后删除不必要文件:
$ rm -rf *.json
确认/etc/kubernetes有以下文件:
$ ls /etc/kubernetes/
admin.conf bootstrap.conf encryption.yml kube-proxy.conf pki token.csv
audit-policy.yml controller-manager.conf kubelet.conf manifests scheduler.conf
在master1将kube-proxy相关文件复制到 Node 节点上:
$ for NODE in node1 node2; do
for FILE in pki/kube-proxy.pem pki/kube-proxy-key.pem kube-proxy.conf; do
scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
done
done
完成后,在master1通过 kubectl 来创建 kube-proxy daemon:
$ export ADDON_URL="https://kairen.github.io/files/manual-v1.8/addon"
$ mkdir -p /etc/kubernetes/addons && cd /etc/kubernetes/addons
$ wget "${ADDON_URL}/kube-proxy.yml.conf" -O kube-proxy.yml
$ kubectl apply -f kube-proxy.yml
$ kubectl -n kube-system get po -l k8s-app=kube-proxy
NAME READY STATUS RESTARTS AGE
kube-proxy-bpp7q 1/1 Running 0 47s
kube-proxy-cztvh 1/1 Running 0 47s
kube-proxy-q7mm4 1/1 Running 0 47s
Kube-dns addon
Kube DNS 是 Kubernetes 集群内部 Pod 之间互相沟通的重要 Addon,它允许 Pod 可以通过 Domain Name 方式来连接 Service,其主要由 Kube DNS 与 Sky DNS 组合而成,通过 Kube DNS 监听 Service 与 Endpoint 变化,来提供给 Sky DNS 信息,已更新解析地址。
安装只需要在master1通过 kubectl 来创建 kube-dns deployment 即可:
$ export ADDON_URL="https://kairen.github.io/files/manual-v1.8/addon"
$ wget "${ADDON_URL}/kube-dns.yml.conf" -O kube-dns.yml
$ kubectl apply -f kube-dns.yml
$ kubectl -n kube-system get po -l k8s-app=kube-dns
NAME READY STATUS RESTARTS AGE
kube-dns-6cb549f55f-h4zr5 0/3 Pending 0 40s
Calico Network 安装与设定
Calico 是一款纯 Layer 3 的数据中心网络方案(不需要 Overlay 网络),Calico 好处是他已与各种云原生平台有良好的整合,而 Calico 在每一个节点利用 Linux Kernel 实现高效的 vRouter 来负责数据的转发,而当数据中心复杂度增加时,可以用 BGP route reflector 来达成。
首先在master1通过 kubectl 建立 Calico policy controller:
$ export CALICO_CONF_URL="https://kairen.github.io/files/manual-v1.8/network"
$ wget "${CALICO_CONF_URL}/calico-controller.yml.conf" -O calico-controller.yml
$ kubectl apply -f calico-controller.yml
$ kubectl -n kube-system get po -l k8s-app=calico-policy
NAME READY STATUS RESTARTS AGE
calico-policy-controller-5ff8b4549d-tctmm 0/1 Pending 0 5s
在master1下载 Calico CLI 工具:
$ wget https://github.com/projectcalico/calicoctl/releases/download/v1.6.1/calicoctl
$ chmod +x calicoctl && mv calicoctl /usr/local/bin/
然后在所有节点下载 Calico,并执行以下步骤:
$ export CALICO_URL="https://github.com/projectcalico/cni-plugin/releases/download/v1.11.0"
$ wget -N -P /opt/cni/bin ${CALICO_URL}/calico
$ wget -N -P /opt/cni/bin ${CALICO_URL}/calico-ipam
$ chmod +x /opt/cni/bin/calico /opt/cni/bin/calico-ipam
接着在所有节点下载 CNI plugins配置文件,以及 calico-node.service:
$ mkdir -p /etc/cni/net.d
$ export CALICO_CONF_URL="https://kairen.github.io/files/manual-v1.8/network"
$ wget "${CALICO_CONF_URL}/10-calico.conf" -O /etc/cni/net.d/10-calico.conf
$ wget "${CALICO_CONF_URL}/calico-node.service" -O /lib/systemd/system/calico-node.service
若部署的机器是使用虚拟机,如 Virtualbox 等的话,请修改calico-node.service文件,并在IP_AUTODETECTION_METHOD(包含 IP6)部分指定绑定的网卡,以避免默认绑定到 NAT 网络上。
之后在所有节点启动 Calico-node:
$ systemctl enable calico-node.service && systemctl start calico-node.service
在master1查看 Calico nodes:
$ cat <<EOF > ~/calico-rc
export ETCD_ENDPOINTS="https://172.16.35.12:2379"
export ETCD_CA_CERT_FILE="/etc/etcd/ssl/etcd-ca.pem"
export ETCD_CERT_FILE="/etc/etcd/ssl/etcd.pem"
export ETCD_KEY_FILE="/etc/etcd/ssl/etcd-key.pem"
EOF $ . ~/calico-rc
$ calicoctl get node -o wide
NAME ASN IPV4 IPV6
master1 (64512) 172.16.35.12/24
node1 (64512) 172.16.35.10/24
node2 (64512) 172.16.35.11/24
查看 pending 的 pod 是否已执行:
$ kubectl -n kube-system get po
NAME READY STATUS RESTARTS AGE
calico-policy-controller-5ff8b4549d-tctmm 1/1 Running 0 4m
kube-apiserver-master1 1/1 Running 0 20m
kube-controller-manager-master1 1/1 Running 0 20m
kube-dns-6cb549f55f-h4zr5 3/3 Running 0 5m
kube-proxy-fnrkb 1/1 Running 0 6m
kube-proxy-l72bq 1/1 Running 0 6m
kube-proxy-m6rfw 1/1 Running 0 6m
kube-scheduler-master1 1/1 Running 0 20m
最后若想省事,可以直接用 Standard Hosted 方式安装。
Kubernetes Extra Addons 部署
本节说明如何部署一些官方常用的 Addons,如 Dashboard、Heapster 等。
Dashboard addon
Dashboard 是 Kubernetes 社区官方开发的仪表板,有了仪表板后管理者就能够透过 Web-based 方式来管理 Kubernetes 集群,除了提升管理方便,也让资源可视化,让人更直觉看见系统信息的呈现结果。
首先我们要建立kubernetes-dashboard-certs,来提供给 Dashboard TLS 使用:
$ mkdir -p /etc/kubernetes/addons/certs && cd /etc/kubernetes/addons
$ openssl genrsa -des3 -passout pass:x -out certs/dashboard.pass.key 2048
$ openssl rsa -passin pass:x -in certs/dashboard.pass.key -out certs/dashboard.key
$ openssl req -new -key certs/dashboard.key -out certs/dashboard.csr -subj '/CN=kube-dashboard'
$ openssl x509 -req -sha256 -days 365 -in certs/dashboard.csr -signkey certs/dashboard.key -out certs/dashboard.crt
$ rm certs/dashboard.pass.key
$ kubectl create secret generic kubernetes-dashboard-certs\
--from-file=certs -n kube-system
接着在master1通过 kubectl 来建立 kubernetes dashboard 即可:
$ export ADDON_URL="https://kairen.github.io/files/manual-v1.8/addon"
$ wget ${ADDON_URL}/kube-dashboard.yml.conf -O kube-dashboard.yml
$ kubectl apply -f kube-dashboard.yml
$ kubectl -n kube-system get po,svc -l k8s-app=kubernetes-dashboard
NAME READY STATUS RESTARTS AGE
po/kubernetes-dashboard-747c4f7cf-md5m8 1/1 Running 0 56s NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kubernetes-dashboard ClusterIP 10.98.120.209 <none> 443/TCP 56s
P.S. 这边会额外创建一个名称为anonymous-open-door Cluster Role Binding,这仅作为方便测试时使用,在一般情况下不要开启,不然就会直接被存取所有 API。
完成后,就可以透过浏览器访问 Dashboard,https://172.16.35.12:6443/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
Heapster addon
Heapster 是 Kubernetes 社区维护的容器集群监控分析工具。Heapster 会从 Kubernetes apiserver 获得所有 Node 信息,然后再通过这些 Node 来获得 kubelet 上的数据,最后再将所有收集到数据送到 Heapster 的后台储存 InfluxDB,最后利用 Grafana 来抓取 InfluxDB 的数据源来进行可视化。
在master1通过 kubectl 来创建 kubernetes monitor 即可:
$ export ADDON_URL="https://kairen.github.io/files/manual-v1.8/addon"
$ wget ${ADDON_URL}/kube-monitor.yml.conf -O kube-monitor.yml
$ kubectl apply -f kube-monitor.yml
$ kubectl -n kube-system get po,svc
NAME READY STATUS RESTARTS AGE
...
po/heapster-74fb5c8cdc-62xzc 4/4 Running 0 7m
po/influxdb-grafana-55bd7df44-nw4nc 2/2 Running 0 7m NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
...
svc/heapster ClusterIP 10.100.242.225 <none> 80/TCP 7m
svc/monitoring-grafana ClusterIP 10.101.106.180 <none> 80/TCP 7m
svc/monitoring-influxdb ClusterIP 10.109.245.142 <none> 8083/TCP,8086/TCP 7m
···
完成后,就可以透过浏览器存取 Grafana Dashboard,https://172.16.35.12:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana
简单部署 Nginx 服务
Kubernetes 可以选择使用指令直接创建应用程序与服务,或者撰写 YAML 与 JSON 档案来描述部署应用程序的配置,以下将创建一个简单的 Nginx 服务:
$ kubectl run nginx --image=nginx --port=80
$ kubectl expose deploy nginx --port=80 --type=LoadBalancer --external-ip=172.16.35.12
$ kubectl get svc,po
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 1h
svc/nginx LoadBalancer 10.97.121.243 172.16.35.12 80:30344/TCP 22s NAME READY STATUS RESTARTS AGE
po/nginx-7cbc4b4d9c-7796l 1/1 Running 0 28s 192.160.57.181 ,172.16.35.12 80:32054/TCP 21s
这边type可以选择 NodePort 与 LoadBalancer,在本地裸机部署,两者差异在于NodePort只映射 Host port 到 Container port,而LoadBalancer则继承NodePort额外多出映射 Host target port 到 Container port。
确认没问题后即可在浏览器存取 http://172.16.35.12
扩展服务数量
若集群node节点增加了,而想让 Nginx 服务提供可靠性的话,可以通过以下方式来扩展服务的副本:
$ kubectl scale deploy nginx --replicas=2 $ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-158599303-0h9lr 1/1 Running 0 25s 10.244.100.5 node2
nginx-158599303-k7cbt 1/1 Running 0 1m 10.244.24.3 node1
k8s-手动安装的更多相关文章
- k8s手动安装-1
1.组网master可以使用双网卡,一个外网网卡连接外网,并且做proxy server,一个host-only网卡和node连接. 新版vitualbox配置host-only需要在主机网络管理器中 ...
- [转帖]容器云之K8s自动化安装方式的选择
容器云之K8s自动化安装方式的选择 时间 2016-12-05 19:10:53 极客头条 原文 http://geek.csdn.net/news/detail/127426 主题 Kubern ...
- Yii2 手动安装yii2-imagine插件
由于网络的原因使用composer安装Yii框架,实在太过痛苦,所以这里干脆就手动安装yii-imagine的扩展. 首先下载yii2-image和Imagine扩展库,点击链接就可以从百度云下载上传 ...
- 将Apache手动安装成Windows的服务
将Apache手动安装成Windows的服务 可以选择在安装Apache时自动将其安装为一个服务.如果选择"for all users",那么Apache将会被安装为服务. 如果选 ...
- python 利用 setup.py 手动安装django_chartit
手动安装django_chartit库 1 下载压缩包 2 解压到python安装目录下,文件夹名为django_chartit,并检查文件夹下是否有setup.py文件 3 在cmd中进入djang ...
- Mac下手动安装Chromedriver.exe
Mac OS X Yosemite 10.10.4下,ChromeDriver运行异常,需要手动安装chromedriver.exe Step 1: 打开https://sites.google.co ...
- windows下手动安装和配置xamarin
安装xamarin xamarin官方给出了两种安装方式,自动安装和手动安装. 自动安装比较简单,到http://xamarin.com/download下载xamarininstaller.exe ...
- Xamarin 手动安装步骤+破解(最新版Xamarin V3)
Create native iOS, Android, Mac and Windows apps in C#. 看到这句话,你就知道Xamarin是什么了,对于C#开发者,这样的标语还是会让你激动一下 ...
- WinServer2008 R2搭建TFS2013小结(无法连接Internet手动安装)
不定时更新参考文档: TFS安装与管理 为本地管理配置本机模式报表服务器 (SSRS) 手里有文档还是掉进各种坑,这里把坑总结一下,方面以后填坑. 安装指导文档中搭建TFS2013用了两台服务器,把S ...
- 手动安装 atom 扩展包 packages
由于某些原因, 我们下载 atom 扩展时发现速度特别慢, 或者根本无法下载, 那我们可以尝试手动安装 首先, 从 github 上下载(或其它地方) 扩展包, 解压 进入该文件夹, 找到 packa ...
随机推荐
- ansible api 通过python 方式调用
pip3 install ansible Linux下面安装 Windows 安装没成功 from ansible.parsing.dataloader import DataLoader #读取ya ...
- CODE FESTIVAL 2017 qual B C 3 Steps(补题)
总感觉这题是个题意杀,理解错题目了,看了好久才发现题目意思:操作是让,只要两点没有直接相连,而且只要有一条路的距离3,就可以把这两点连接起来. 按照题解中讲的,可以把图分为二分图和非二分图来解.不过题 ...
- axios 跨域
{ headers:{"Content-Type":"application/x-www-form-urlencoded;charset=utf-8"} ...
- Vue的第一个实例
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- linux中添加常用应用程序的桌面图标
在网上随处可以找到怎么样把应用程序的图标放到桌面上,我刚用ubuntu时也是按照网上的做法,一步一步的做的,现将网上的做法复制下来: 桌面配置文件简述\label{sec:desktop file} ...
- HDU 1828“Picture”(线段树+扫描线求矩形周长并)
传送门 •参考资料 [1]:算法总结:[线段树+扫描线]&矩形覆盖求面积/周长问题(HDU 1542/HDU 1828) •题意 给你 n 个矩形,求矩形并的周长: •题解1(两次扫描线) 周 ...
- easyui—element-ui框架套用(表格宽度自适应)
外层使用easyui框架中window组件,便于使用最大化功能:内部表格使用element-ui在的el-table,el-table列宽须设置为最小宽度才能在最大化窗口时列表中列宽自适应window ...
- java 面试题之银行业务系统
1.需求 模拟实现银行业务调度系统逻辑,具体需求如下: 银行内有6个业务窗口,1 - 4号窗口为普通窗口,5号窗口为快速窗口,6号窗口为VIP窗口. 有三种对应类型的客户:VIP客户,普通客户,快速客 ...
- H3C 域名解析显示及维护
- RocketMQ(消息重发、重复消费、事务、消息模式)
分布式开放消息系统(RocketMQ)的原理与实践 RocketMQ基础:https://github.com/apache/rocketmq/tree/rocketmq-all-4.5.1/docs ...