正解:数位$dp$

解题报告:

传送门!

然后因为没有翻译所以先放个翻译$QAQ$

有一个无穷大的矩阵,第$i$行第$j$列的数是$(i-1)\ xor\ (j-1)+1$,有$q$次询问,每次询问一个矩形内$(x_{1},y_{1})(x_{2},y_{2})$小于等于$k$的数的和

好像是考试题,,,?学长出的$QwQ$?

然后考虑怎么做趴$QwQ$,发现这个式子其实要拆成两个部分?一个是$\sum (i-1)\ xor\ (j-1)$,一个是$\sum 1$,所以考虑拆成两个部分?一个为和一个为方案数$QwQ$

其实和与方案数的求法差不多,,,我就以和为$eg$港下怎么做嗷$QwQ$

其实是类似普通的数位$dp$的,设$f_{i,0/1,0/1,0/1}$表示考虑到第$i$位,$x$是否到达上限,$y$是否到达上限,$x\ xor\ y$是否到达上限.这么解释着可能有点儿空,,,,详细解释下$QwQ$

$f_{i,p,q,r}$,$i$表示二进制拆分后从高位到低位考虑到$x\ xor\ y$的第$i$位了,$p$表示二进制拆分后行号$x$是否是顶着$x_{1}$/$x_{2}$的,$q$表示二进制拆分后列号$y$是否是顶着$y_{1}$/$y_{2}$的,$r$表示二进制拆分后$x\ xor\ y$的值是否是顶着$k$的,然后转移下就好.这样解释下大概就能$get$了?发现其实和普通的数位$dp$也差不多,只不过平常的数位$dp$是十进制分解,这里因为涉及二进制运算所以就二进制分解掉了$QwQ$

然后转移也和普通的数位$dp$差不多?就如果顶着上线继续转移,否则随便搞

$over$?

对了这题不用$dfs$,直接$for$循环那种转移简洁明了$w$

恩留一个坑,就其实题目最开始给定的是说$(x,y)$这个格子的值是$mex_{i=1,j=1}^{x-1,y-1}dat_{i,j}$,但是因为我并不会证为什么它就等于$(x-1)\ xor\ (y-1)$,,,所以咕了$QwQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define int long long
#define gc getchar()
#define ri register int
#define rb register int
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i) const int mod=1e9+,N=;
int K,f[N][][][],g[N][][][]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il int solv(ri x,ri y)
{
memset(f,,sizeof(f));memset(g,,sizeof(g));f[][][][]=;if(x< || y<)return ;
my(i,,)
rp(p,,)
rp(q,,)
rp(r,,)
if(f[i+][p][q][r])
rp(j,,)
rp(k,,)
{
if(!p && j && !(x&(<<i)))continue;
if(!q && k && !(y&(<<i)))continue;
if(!r && (j^k) && !(K&(<<i)))continue;
ri tmpp=p,tmpq=q,tmpr=r;
if(!j && (x&(<<i)))tmpp|=;
if(!k && (y&(<<i)))tmpq|=;
if(!(j^k) && (K&(<<i)))tmpr|=;
(f[i][tmpp][tmpq][tmpr]+=f[i+][p][q][r])%=mod;
(g[i][tmpp][tmpq][tmpr]+=g[i+][p][q][r])%=mod;
if(j^k)(g[i][tmpp][tmpq][tmpr]+=1ll*(<<i)*f[i+][p][q][r]%mod)%=mod;
}
ri ret=;rp(i,,)rp(j,,)rp(k,,)(ret+=g[][i][j][k])%=mod,(ret+=f[][i][j][k])%=mod;return ret;
} main()
{
//freopen("809c.in","r",stdin);freopen("809c.out","w",stdout);
ri T=read();
while(T--)
{
ri x_1=read()-,y_1=read()-,x_2=read()-,y_2=read()-;K=read()-;
printf("%d\n",(solv(x_2,y_2)+solv(x_1-,y_1-)+mod+mod-solv(x_2,y_1-)-solv(x_1-,y_2))%mod);
}
return ;
}

随机推荐

  1. javascript内置函数

    1.Date:日期函数属性(1):constructor 所修立对象的函数参考prototype 能够为对象加进的属性和方法办法(43):getDay() 返回一周中的第几天(0-6)getYear( ...

  2. PyTorch入门学习(二):Autogard之自动求梯度

    autograd包是PyTorch中神经网络的核心部分,简单学习一下. autograd提供了所有张量操作的自动求微分功能. 它的灵活性体现在可以通过代码的运行来决定反向传播的过程, 这样就使得每一次 ...

  3. Lambda plus: 云上大数据解决方案

    本文会简述大数据分析场景需要解决的技术挑战,讨论目前主流大数据架构模式及其发展.最后我们将介绍如何结合云上存储.计算组件,实现更优的通用大数据架构模式,以及该模式可以涵盖的典型数据处理场景. 大数据处 ...

  4. PHP 手机短信验证码 laravel 实现流程

    https://blog.csdn.net/uknow0904/article/details/80336941 本人在自己博客(Laravel)的注册部分 使用手机号注册,需要发送短信验证码. 使用 ...

  5. js循环遍历数组(对象)

    1,for循环 对于循环应该是最常用的一种遍历方式了,通常用来遍历数组结构. let arr = [a,b,d];for (let i=0; i<arr.length; i++){ consol ...

  6. hdu 4063 Aircraft (Geometry + SP)

    Problem - 4063 几何加简单最短路. 题意是给出若干圆的圆心以及半径,求出从给出的起点到终点的最短路径的长度,可以移动的区域是圆覆盖到的任意一个位置. 做法是这样的,对圆两两求交点,用这些 ...

  7. laravel5 怎么获取数组形式的数据

    当构建 JSON API 时,您可能常常需要把模型和关联对象转换成数组或JSON.所以Eloquent里已经包含了这些方法.要把模型和已载入的关联对象转成数组,可以使用 toArray方法: $use ...

  8. CSS的固定定位

    将元素放置在浏览器窗口的固定位置,拖拽窗口时元素位置不变. 类似语法: div{ position:fixed; top:0px; left:0px; right:0px; bottom:0px; }

  9. CRF(条件随机场)与Viterbi(维特比)算法原理详解

    摘自:https://mp.weixin.qq.com/s/GXbFxlExDtjtQe-OPwfokA https://www.cnblogs.com/zhibei/p/9391014.html C ...

  10. Vue的filter过滤器

    一和二,请参考https://www.cnblogs.com/zui-ai-java/p/11109213.html 三.index.html <!DOCTYPE html> <ht ...