我恨数论

因为打这篇的时候以为a|b是a是b的倍数,但是懒得改了,索性定义 a|b 为 a是b的倍数

咳咳,那么进入正题,如何证明gcd,也就是 gcd(a,b) = gcd(b,a%b)?

首先,设

p = a/b,c = a mod b

则a = p*b + c

m = gcd(a,b),n = gcd(b,c)

因为m = gcd(a,b),所以 a | m 且 b | m

因为 b | m

所以 b * p | m                //  a|b,则a*k|b (k为整数)

因为a | m

所以a - b * p | m           //   a|b,则k*b - a | b (k为整数)

因为 a = p*b + c

所以 c = a - p*b

所以 c | m

因为c | m,且b | m

所以m为 c,b的公约数

因为n为 c,b的最大公约数

所以m <= n

因为n = gcd(b,c)

所以 b | n , c | n

因为 b | n

所以 b * p | n

因为 c | n

所以 b * p + c | n

因为 a = b * p + c

所以a | n

因为a | n,且 b | n

则n为a,b的公约数

因为m为a,b的最大公约数

所以 n <= m

因为m <= n

所以m = n

所以gcd(a,b) = gcd(b,c)

所以gcd(a,b) = gcd(b,a%b)

整体思路是:

先设出一个关系,然后通过关系证明它们的另一个关系

从gcd(a,b)转换得到b,c是公约数关系,

从gcd(b,c)转换得到a,b是公约数关系,

分别得到它们的大小关系,最后求公共解集,得到两个gcd相等

然后把c带上去,得到我们要证的式子

证完了gcd,下面可以证exgcd

exgcd 可以求

ax + by = gcd(a,b) 中的x,y

那么,我们设

ax1 + by1 = gcd(a,b)

由gcd得出

ax1 + by1 = gcd(b,a mod b)

设bx2 + a mod b y2 = gcd(b,a mod b)

下面用x2开始化简:

gcd(b, a mod b) = b * x2 + a mod b *y2

gcd(b, a mod b) = b * x2 + (a - floor(a/b) * b) * y2

gcd(b, a mod b) = b * x2 + a * y2 - floor(a/b) * b * y2

gcd(b, a mod b) = a * y2 + b * x2 - floor(a/b) * b * y2

gcd(b, a mod b) = a * y2 + b * (x2 - floor(a/b) * y2)

所以

ax1 + by1 = gcd(b, a mod b) = bx2 + a mod b y2 = a * y2 + b * (x2 - floor(a/b) * y2)

所以第一个式子与最后一个式子等量代换得到

x1 = y2

y1 = x2 - floor(a/b) * y2

然后可以通过以上等价式子写出递归,得到x1、y1。

【数论】如何证明gcd/exgcd的更多相关文章

  1. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  2. gcd, exgcd的证明

  3. Gcd&Exgcd算法学习小记

    Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用E ...

  4. 简单数论总结1——gcd与lcm

    并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分 ...

  5. gcd&&exgcd&&斐蜀定理

    gcd就是求a和b最大公约数,一般方法就是递推.不多说,上代码. 一.迭代法 int gcd(int m, int n) { ) { int c = n % m; n = m; m = c; } re ...

  6. Gcd&Exgcd

    欧几里得算法: \[gcd(a,b)=gcd(b,a\bmod b)\] 证明: 显然(大雾) 扩展欧几里得及证明: 为解决一个形如 \[ax+by=c\] 的方程. 根据裴蜀定理,当且仅当 \[gc ...

  7. 【数论】二进制GCD

    二进制GCD     GCD这种通用的算法相信每个OLER都会 ,辗转相除,代码只有四行 : int GCD(int a,int b){ if(b==0) return a; return GCD(b ...

  8. 约数,gcd,exgcd.

    很多题都是要求出什么最大公约数或者最小公倍数什么的,也有一些题目是和约数个数有关的,所以需要总结一下. 首先最大公约数和最小公倍数怎么求呢? 当然是观察法了,对于一些很聪明的孩纸他们一般随便一看就秒出 ...

  9. 算法马拉松35 E 数论只会Gcd - 类欧几里得 - Stern-Brocot Tree - 莫比乌斯反演

    题目传送门 传送门 这个官方题解除了讲了个结论,感觉啥都没说,不知道是因为我太菜了,还是因为它真的啥都没说. 如果 $x \geqslant y$,显然 gcd(x, y) 只会被调用一次. 否则考虑 ...

随机推荐

  1. webpack打包less与sass

    less 1.安装 less-loader 与 less npm install less-loader less --save-dev 2.配置webpack.config.js module.ex ...

  2. light oj 1079 01背包

    #include <iostream> #include <algorithm> #include <cstring> #include <cstdio> ...

  3. jeecmsv8 shiro 分析

      源代码注释可见 https://github.com/chenbo19867758/jeecmsV8-BoBo.git 1.后台登录页面 /jeeadmin/jeecms/login.do 1 w ...

  4. 通过三个DEMO学会SignalR的三种实现方式 转载https://www.cnblogs.com/zuowj/p/5674615.html

    一.理解SignalR ASP .NET SignalR 是一个ASP .NET 下的类库,可以在ASP .NET 的Web项目中实现实时通信(即:客户端(Web页面)和服务器端可以互相实时的通知消息 ...

  5. 装配SpringBean(一)--依赖注入

    所谓依赖注入,我觉得说白了其实就是给成员变量赋值,不管这个成员变量是基本类型还是引用类型,Spring中常用的依赖注入方式有两种: 1.构造器注入 2.setter注入 下面通过代码实例说明这两种注入 ...

  6. Hadoop中map数的计算

    转载▼ Hadoop中在计算一个JOB需要的map数之前首先要计算分片的大小.计算分片大小的公式是: goalSize = totalSize / mapred.map.tasks minSize = ...

  7. 获取MMSQL数据库表信息

    SELECT 表名 then d.name else '' end, 表说明 then isnull(f.value,'') else '' end, 字段序号=a.colorder, 字段名=a.n ...

  8. 洛谷 2890 [USACO07OPEN]便宜的回文Cheapest Palindrome

    传送门 一道最简单的区间dp,然而我还是抄了题解. //Twenty #include<algorithm> #include<iostream> #include<cs ...

  9. 一次完整的HTTP事务的过程、从输入URL到网页展示,浏览器都经历了什么?

    详细介绍:老生常谈-从输入url到页面展示到底发生了什么 (1)一次完整的HTTP事务的过程 基本流程: a. 域名解析 b. 发起TCP的3次握手 c. 建立TCP连接后发起http请求 d. 服务 ...

  10. 通过Struts2Web应用框架深入理解MVC

    Struts2是一个基于MVC设计模式的Web应用框架,它本质上相当于一个servlet. 一.用法简介: 1.Eclipse新建Dynamic Web Project, 项目名:Struts2Pro ...