Spark RDD基本概念、宽窄依赖、转换行为操作
本文介绍一下rdd的基本属性概念、rdd的转换/行动操作、rdd的宽/窄依赖。
RDD:Resilient Distributed Dataset 弹性分布式数据集,是Spark中的基本抽象。
RDD表示可以并行操作的元素的不变分区集合。
RDD提供了许多基本的函数(map、filter、reduce等)供我们进行数据处理。
RDD概述
通常来说,每个RDD有5个主要的属性组成:
分区列表
RDD是由多个分区组成的,分区是逻辑上的概念。RDD的计算是以分区为单位进行的。
用于计算每个分区的函数
作用于每个分区数据的计算函数。
对其他RDD的依赖关系列表
RDD中保存了对于父RDD的依赖,根据依赖关系组成了Spark的DAG(有向无环图),实现了spark巧妙、容错的编程模型
针对键值型RDD的分区器
分区器针对键值型RDD而言的,将key传入分区器获取唯一的分区id。在shuffle中,分区器有很重要的体现。
对每个分区进行计算的首选位置列表
根据数据本地性的特性,获取计算的首选位置列表,尽可能的把计算分配到靠近数据的位置,减少数据的网络传输。
RDD的内部代码
先看看基本概念的代码:
//创建此RDD的SparkContext
def sparkContext: SparkContext = sc
// 唯一的id
val id: Int = sc.newRddId()
// rdd友善的名字
@transient var name: String = _
// 分区器
val partitioner: Option[Partitioner] = None
// 获取依赖列表
// dependencies和partitions中都用到了checkpointRDD,如果进行了checkpoint,checkpointRDD表示进行checkpoint后的rdd
final def dependencies: Seq[Dependency[_]] = {
// 一对一的窄依赖
checkpointRDD.map(r => List(new OneToOneDependency(r))).getOrElse {
if (dependencies_ == null) {
dependencies_ = getDependencies
}
dependencies_
}
}
// 获取分区列表
final def partitions: Array[Partition] = {
checkpointRDD.map(_.partitions).getOrElse {
if (partitions_ == null) {
partitions_ = getPartitions
partitions_.zipWithIndex.foreach { case (partition, index) =>
require(partition.index == index,
s"partitions($index).partition == ${partition.index}, but it should equal $index")
}
}
partitions_
}
}
// 获取分区的首选位置
final def preferredLocations(split: Partition): Seq[String] = {
checkpointRDD.map(_.getPreferredLocations(split)).getOrElse {
getPreferredLocations(split)
}
}
// 对应到每个分区的计算函数
def compute(split: Partition, context: TaskContext): Iterator[T]
主要就是围绕上面5个重要属性的一些操作
常用的函数/算子
// 返回仅包含满足过滤条件的元素的新RDD。
def filter(f: T => Boolean): RDD[T] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[T, T](
this,
(context, pid, iter) => iter.filter(cleanF),
preservesPartitioning = true)
}
// 通过将函数应用于此RDD的所有元素来返回新的RDD。
def map[U: ClassTag](f: T => U): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
}
// 首先向该RDD的所有元素应用函数,然后将结果展平,以返回新的RDD。
def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = withScope {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.flatMap(cleanF))
}
我们可以发现几乎每个算子都会以当前RDD和对应的计算函数创建新的RDD,每个子RDD都持有父RDD的引用。
这就印证了RDD的不变性,也表明了RDD的计算是通过对RDD进行转换实现的。
案例
val words = Seq("hello spark", "hello scala", "hello java")
val rdd = sc.makeRDD(words)
rdd
.flatMap(_.split(" "))
.map((_, 1))
.reduceByKey(_ + _)
.foreach(println(_))
上面是一个简单的RDD的操作,我们先调用makeRDD创建了一个RDD,之后对rdd进行一顿算子调用。
首先调用flatMap,flatMap内部会以当前rdd
和我们传入的_.split(" ")
构建新的MapPartitionsRDD;
之后map,map以上步生成的MapPartitionsRDD
和我们传入的(_, 1)
构造新的MapPartitionsRDD;
之后reduceByKey,reduceByKey构造新的RDD;
走到foreach,foreach是行动操作,触发计算,输出。
小总结
- RDD内部的计算除action算子以外,其他算子都是懒执行,不会触发计算,只是进行RDD的转换。
- RDD的计算是基于分区为单位计算的,我们传进去的函数,作用于分区进行计算
转换、行动算子
从上面知道RDD是懒执行的,只有遇到行动算子才执行计算。
转换操作:在内部对根据父RDD创建新的RDD,不执行计算
行动操作:内部会调用sc.runJob
,提交作业、划分阶段、执行作业。
一些常见的行动操作
foreach、foreachPartition、collect、reduce、count
除行动操作外,都是转换操作
宽、窄依赖
宽窄依赖是shuffle和划分调度的重要依据。
先看看spark中与依赖有关的几个类(一层一层继承关系):
Dependency依赖的顶级父类
NarrowDependency 窄依赖
OneToOneDependency 表示父RDD和子RDD分区之间的一对一依赖关系的窄依赖
RangeDependency 表示父RDD和子RDD中分区范围之间的一对一依赖关系的窄依赖
ShuffleDependency 宽依赖
先说宽窄依赖的概念:
窄依赖:父RDD的每个分区只被一个子RDD分区使用
宽依赖:父RDD的每个分区都有可能被多个子RDD分区使用
其实就是父RDD的一个分区会被传到几个子RDD分区的区别。如果被传到一个子RDD分区,就可以不需要移动数据(移动计算);如果被传到多个子RDD分区,就需要进行数据的传输。
接下来看看Dependency内部的一些属性及方法:
// 依赖对应的rdd,其实就是当前rdd的父rdd。宽依赖和窄依赖都有这个属性
def rdd: RDD[T]
// 获取子分区对应的父分区(窄依赖的方法)
def getParents(partitionId: Int): Seq[Int]
// 以下是宽依赖的属性及方法
// 对应键值RDD的分区器
val partitioner: Partitioner
// 在数据传输时的序列化方法
val serializer: Serializer = SparkEnv.get.serializer
// 键的排序方式
val keyOrdering: Option[Ordering[K]] = None
// 一组用于聚合数据的功能
val aggregator: Option[Aggregator[K, V, C]] = None
// 是否需要map端预聚合
val mapSideCombine: Boolean = false
// 当前宽依赖的id
val shuffleId: Int = _rdd.context.newShuffleId()
// 向管理员注册一个shuffle,并获取一个句柄,以将其传递给任务
val shuffleHandle: ShuffleHandle = _rdd.context.env.shuffleManager.registerShuffle(
shuffleId, _rdd.partitions.length, this)
一些常见的宽窄依赖
窄依赖:map、filter、union、mapPartitions、join(当分区器是HashPartitioner)
宽依赖:sortByKey、join(分区器不是HashPartitioner时)
最后说一下reduceByKey,顺便说一下为什么当分区器HashPartitioner时就是窄依赖。
reduceByKey是用来将key分组后,执行我们传入的函数。
它是窄依赖,它内部默认会使用HashPartitioner分区。
同一个key进去HashPartitioner得到的分区id是一样的,这样进行计算前后同一个key得到的分区都一样,父RDD的分区就只被子RDD的一个分区依赖,就不需要移动数据。
所以join、reduceByKey在分区器是HashPartitioner时是窄依赖。
end. 个人理解,如有偏差,欢迎交流指正。
Reference
- 《图解Spark核心技术与案例实战》
- 宽窄依赖:https://www.jianshu.com/p/5c2301dfa360
扶我起来,我还能学。
个人公众号:码农峰,定时推送行业资讯,持续发布原创技术文章,欢迎大家关注。
Spark RDD基本概念、宽窄依赖、转换行为操作的更多相关文章
- Spark RDD基本概念与基本用法
1. 什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具 ...
- 【Spark-core学习之五】 RDD宽窄依赖 & Stage
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...
- Spark RDD、DataFrame原理及操作详解
RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以 ...
- spark RDD 常见操作
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...
- Spark RDD概念学习系列之Spark的算子的作用(十四)
Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算 ...
- 关于spark RDD trans action算子、lineage、宽窄依赖详解
这篇文章想从spark当初设计时为何提出RDD概念,相对于hadoop,RDD真的能给spark带来何等优势.之前本想开篇是想总体介绍spark,以及环境搭建过程,但个人感觉RDD更为重要 铺垫 在h ...
- Spark RDD 宽窄依赖
RDD 宽窄依赖 RDD之间有一系列的依赖关系, 可分为窄依赖和宽依赖 窄依赖 从 RDD 的 parition 角度来看 父 RRD 的 parition 和 子 RDD 的 parition 之间 ...
- 【原】Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令
<Learning Spark>这本书算是Spark入门的必读书了,中文版是<Spark快速大数据分析>,不过豆瓣书评很有意思的是,英文原版评分7.4,评论都说入门而已深入不足 ...
- Spark RDD的依赖解读
在Spark中, RDD是有依赖关系的,这种依赖关系有两种类型 窄依赖(Narrow Dependency) 宽依赖(Wide Dependency) 以下图说明RDD的窄依赖和宽依赖 窄依赖 窄依赖 ...
随机推荐
- VUE CLI环境搭建文档
VUE CLI环境搭建文档 1.安装Node.js 下载地址 https://nodejs.org/zh-cn/download/ 2.全局安装VUE CLI win+R键打开运行cmd窗口输入一下代 ...
- 程序员如何才能跨过高级级别,譬如腾讯T3.1/阿里P7
首先自我介绍下自己履历:5年前过了腾讯的T3.2,最近又在1年多前过了阿里的P8,目前在B站. **腾讯** 在腾讯我是T2.1社招一般水平入职的,3年后到了T3.2.中间是经历过几个转变:刚来的半年 ...
- 非关系数据库与redis安装
1.什么是 NoSQL? NoSQL(NoSQL = Not Only SQL ),意为反 SQL 运动,是一项全新的数据库革命性运动,2000 年 前就有人提出,发展至 2009 年趋势越发高涨.它 ...
- OpenGL ES for Android 环境搭建
在Android上运行OpenGL ES程序需要用到GLSurfaceView控件,GLSurfaceView继承自SurfaceView并实现了GLThread,通过OpenGL ES进行绘制. O ...
- JVM中的GC算法,JVM参数,垃圾收集器分类
一.在JVM中什么是垃圾?如何判断一个对象是否可被回收?哪些对象可以作为GC Roots的根 垃圾就是在内存中已经不再被使用到的空间就是垃圾. 1.引用计数法: 内部使用一个计数器,当有对象被引用+1 ...
- Please verify that your device’s clock is properly set, and that your signing certificate is not expired.
解决方法: 1.关闭项目,找到项目文件XXXX.xcodeproj,在文件上点击右键,选择“显示包内容”(Show Package Contents).会新打开一个Finder. 2.在新打开的Fin ...
- RabbitMQ入门(三)订阅模式
在之前的文章RabbitMQ入门(二)工作队列中,我们创建了一个工作队列.工作队列背后的假设是每一项任务都被准确地传送至一个worker.在本文中,我们将会做一些不同的事情--我们将会把一个消息发 ...
- JUC中的原子操作类及其原理
昨天简单的看了看Unsafe的使用,今天我们看看JUC中的原子类是怎么使用Unsafe的,以及分析一下其中的原理! 一.简单使用AtomicLong 还记的上一篇博客中我们使用了volatile关键字 ...
- Apache Hudi 0.5.1版本重磅发布
历经大约3个月时间,Apache Hudi 社区终于发布了0.5.1版本,这是Apache Hudi发布的第二个Apache版本,该版本中一些关键点如下 版本升级 将Spark版本从2.1.0升级到2 ...
- python应用airtest库的环境搭建
参考https://blog.csdn.net/ywyxb/article/details/64126927 注意:无论是在线还是离线安装,最好在管理员权限下执行命令 1.安装Python36(32位 ...