Chapter 3 数学与简单DP

上取整:

a / b //下取整
(a + b - 1) / b //上取整

+++

  • 数学

1.买不到的数目 1205
//如果不知道公式,可以暴搜打表找规律(★)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; bool dfs(int u, int n, int m)
{
if(!u) return true;
if(u >= n && dfs(u - n, n, m)) return true;
if(u >= m && dfs(u - m, n, m)) return true;
return false;
} int main()
{
int n, m;
int res = 0;
cin >> n >> m;
for(int i = 0; i <= 1000; i++)
if(!dfs(i, n, m)) res = i;
cout << res << endl;
return 0;
}
/*打表
3 4 5
3 5 7
3 7 11
3 8 13
3 10 17
*/
AC code
#include <iostream>

using namespace std;

int main()
{
int n, m;
cin >> n >> m;
cout << (n - 1) * (m - 1) - 1 << endl;//公式,记住
return 0;
}
2.蚂蚁感冒 1211
//脑筋急转弯,,换位思考
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 55;
int ant[maxn];
int n; int main()
{
cin >> n;
for(int i = 0; i < n; i++ ) cin >> ant[i];
int left = 0, right = 0;
for(int i = 1; i < n; i++ )
{
if(abs(ant[i]) < abs(ant[0]) && ant[i] > 0) left ++;
if(abs(ant[i]) > abs(ant[0]) && ant[i] < 0) right ++;
}
if(ant[0] > 0 && right == 0 || ant[0] < 0 && left == 0) cout << 1 << endl;
else cout << left + right + 1 << endl;
return 0;
}
3.饮料换购 1216
//小学数学题
#include <iostream> using namespace std; int sum, m; void dfs(int u)
{
if(u < 3) return;
sum += u / 3;
dfs(u / 3 + u % 3);
} int main()
{
cin >> m;
sum = m;
dfs(m);
cout << sum << endl;
}
  • 简单DP

1.状态表示 : 数组元素 表示的是一个集合,存的当前集合的属性

i为行下标 j为列下标 表示只从前i个物品中选,物品总体积<= j

2.状态计算

集合的划分

1.01背包问题 2
//无优化版
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 1010;
int f[maxn][maxn];//代表集合,存放符合需要的数据
int v[maxn], w[maxn];
int m, n; int main()
{
cin >> m >> n;
for(int i = 1; i <= m; i++ ) cin >> v[i] >> w[i];
for(int i = 1; i <= m; i++ )
for(int j = 0; j <= n; j++ )
{
f[i][j] = f[i - 1][j];//不选第i个的情况
//选择第i个的情况
if(j >= v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
cout <<f[m][n] << endl;
return 0;
}
//优化版本
/*
1. f[i] 仅用到了f[i-1]层,
2. j与j-v[i] 均小于j
3.若用到上一层的状态时,从大到小枚举, 反之从小到大
*/
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 1010;
int n, m;
int v[maxn], w[maxn];
int f[maxn]; int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++ ) cin >> v[i] >> w[i];
for(int i = 1; i <+ m; i++ )
for(int j = m; j >= v[i]; j--)//j从大到小
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[m] << endl;
return 0;
}
2.摘花生 1015
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxn = 105;
int f[maxn][maxn], w[maxn][maxn];//f[][]为存放路线与路线最大值的二维数组
int m, n;
int T; int main()
{
cin >> T;
while(T--)
{
scanf("%d%d", &m, &n);
for(int i = 1; i <= m; i++ )
for(int j = 1; j <= n; j++ )
scanf("%d", &w[i][j]); for(int i = 1; i <= m; i++ )
for(int j = 1; j <= n; j++ )
f[i][j] = max(f[i - 1][j], f[i][j - 1]) + w[i][j];
//f[i][j]为上一步最大值加上w[i][j]的花生数目
cout << f[m][n] << endl;
}
return 0;
}
3.最长上升子序列 895
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 1010;
int a[maxn], b[maxn];
int n, res; int main()
{
cin >> n;
for(int i = 1; i <= n; i++ )cin >> a[i]; for(int i = 1; i <= n; i++ )
{
b[i] = 1;
for(int j = 1; j < i; j++ )
if(a[j] < a[i]) b[i] = max(b[i], b[j] + 1);
res = max(res, b[i]);
} cout << res << endl;
return 0;
}
4.地宫取宝 1212

这题是最大上升子序列加上摘花生的结合版本,要考虑的东西变多了。

1.要考虑每次拿的宝物的价值与最大上升子序列类似,只不过序列数是固定的

2.4维dp,i j k v 分别表示从起点走到坐标i j,捡起来了k件宝物,宝物的最大价值是v

3.起点的初始化问题

#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 55, MOD = 1e9 + 7;
int w[maxn][maxn];
int f[maxn][maxn][13][14];
int n, m, k; int main()
{
cin >> m >> n >> k;
for(int i = 1; i <= m; i++ )
for(int j = 1; j <= n; j++ )
{
scanf("%d", &w[i][j]);
w[i][j]++;
}
f[1][1][0][0] = 1;//初始化
f[1][1][1][w[1][1]] = 1; for(int i = 1; i <= m; i++ )
for(int j = 1; j <= n; j++ )
{
if(i == 1 && j == 1) continue;//因为[1][1]已经初始化过,可无
for(int u = 0; u <= k; u++ )
for(int v = 0; v <= 13; v++ )
{
int &val = f[i][j][u][v];//引用使代码看起来简洁
//不选w[i][j]的两种情况
val = (val + f[i - 1][j][u][v]) % MOD;
val = (val + f[i][j - 1][u][v]) % MOD; if(u > 0 && v == w[i][j])//选w[i][j]的两种情况
{
for(int c = 0; c < v; c++ )
{
val = (val + f[i - 1][j][u - 1][c]) % MOD;
val = (val + f[i][j - 1][u - 1][c]) % MOD;
}
}
}
}
int res = 0;
for(int v = 0; v <= 13; v ++ ) res = (res + f[m][n][k][v]) % MOD; cout << res << endl;
return 0; }
5.波动数列 1214

设第一项为x,di 为+a或者-b,则序列可以表示为:

x , x + d1, x + d1 + d2, ... , x + d(n-1)

则s = n * x + (n - 1)d1 + (n - 2)d2 + ... + d(n - 1)

因为x的取值范围为R,因此想到用其他变量表示x,而且方面起见,将d的序号反过来

x = [s - (d1 + 2d2 + 3d3 + ... + (n - 1)d(n - 1))] / n

首先可以知道一组合法的di序列对应一个唯一的x,所以题目问题也就是问有多少组合法的di序列

其次因为x是整数,所以又可以转换为有多少组di序列使得上式的分子mod n余数相等

//f[i][j]表示前i组di序列mod n的余数为j的序列数的总和
//设前i-1项mod n为c,则f[i][j]项mod n的值就是 c + i * a = j mod n,
//因此c为(j - a * i) mod n
#include <iostream>
#include <algorithm>
#include <cstring> using namespace std; const int maxn = 1010, MOD = 100000007;
int f[maxn][maxn];//第二维表示mod n为 j的序列和 int get_mod(int x, int y)//确保mod的余数全部为整数,防止数组越界
{
return (x % y + y) % y;
} int main()
{
int n, s, a, b;
cin >> n >> s >> a >> b; f[0][0] = 1;//初始化
for(int i = 1; i < n; i++ )
for(int j = 0; j < n; j ++ )
f[i][j] = (f[i - 1][get_mod(j - a * (n - i), n)] + f[i - 1][get_mod(j + b * (n - i), n)]) % MOD;
//最后要输出的是前n - 1 项序列和mod n的数值为 get_mod(s, n)的合法序列数目
cout << f[n - 1][get_mod(s, n)] << endl;
return 0;
}

Chapter3数学与简单DP的更多相关文章

  1. HDU 1087 简单dp,求递增子序列使和最大

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. Codeforces Round #260 (Div. 1) A. Boredom (简单dp)

    题目链接:http://codeforces.com/problemset/problem/455/A 给你n个数,要是其中取一个大小为x的数,那x+1和x-1都不能取了,问你最后取完最大的和是多少. ...

  3. codeforces Gym 100500H A. Potion of Immortality 简单DP

    Problem H. ICPC QuestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100500/a ...

  4. 简单dp --- HDU1248寒冰王座

    题目链接 这道题也是简单dp里面的一种经典类型,递推式就是dp[i] = min(dp[i-150], dp[i-200], dp[i-350]) 代码如下: #include<iostream ...

  5. poj2385 简单DP

    J - 简单dp Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bit ...

  6. hdu1087 简单DP

    I - 简单dp 例题扩展 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     ...

  7. poj 1157 LITTLE SHOP_简单dp

    题意:给你n种花,m个盆,花盆是有顺序的,每种花只能插一个花盘i,下一种花的只能插i<j的花盘,现在给出价值,求最大价值 简单dp #include <iostream> #incl ...

  8. hdu 2471 简单DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2571 简单dp, dp[n][m] +=(  dp[n-1][m],dp[n][m-1],d[i][k ...

  9. Codeforces 41D Pawn 简单dp

    题目链接:点击打开链接 给定n*m 的矩阵 常数k 以下一个n*m的矩阵,每一个位置由 0-9的一个整数表示 问: 从最后一行開始向上走到第一行使得路径上的和 % (k+1) == 0 每一个格子仅仅 ...

随机推荐

  1. centos7 手动设置时间

    date -s "2020-02-03 23:13:00" hwclock -w clock -w

  2. Dwz/Jquery--使用Ajax提交表单时调用表单设置的校验

    案例 今天有一个需求就是点击按钮时,使用ajax方式提交表单,而且不是直接用form表单下的submit按钮提交,表单中用的校验是dwz 自带的校验方式,表单模板如下: <li><d ...

  3. linux系统CentOS7中find命令使用

    一.作用 查找文件或目录 二.参数(常用) -atime 查找在指定时间曾被存取过的目录或文件,单位以24小时计算.(访问时间,执行文件等) -ctime 查找指定时间曾被更改的目录或文件,单位以24 ...

  4. 实验11:EIGRP

    实验8-1:EIGRP 基本配置 实验目的通过本实验可以掌握:(1)在路由器上启动EIGRP 路由进程(2)启用参与路由协议的接口,并且通告网络(3)EIGRP 度量值的计算方法(4)可行距离(FD) ...

  5. LeetCode 664. Strange Printer 奇怪的打印机(C++/Java)

    题目: There is a strange printer with the following two special requirements: The printer can only pri ...

  6. python学习记录(三)

    0827--https://www.cnblogs.com/fnng/archive/2013/02/24/2924283.html 通用序列操作 索引 序列中的所有元素都是有编号的--从0开始递增. ...

  7. 7天用Go动手写/从零实现分布式缓存GeeCache

    1 谈谈分布式缓存 第一次请求时将一些耗时操作的结果暂存,以后遇到相同的请求,直接返回暂存的数据.我想这是大部分童鞋对于缓存的理解.在计算机系统中,缓存无处不在,比如我们访问一个网页,网页和引用的 J ...

  8. 详解c++中对二维数组下标[][]的重载

    首先定义一个矩阵类,我用一个二维数组存储矩阵中的数据,矩阵详细定义如下 class Matrix { public: Matrix(int rows, int cols) { _rows = rows ...

  9. java虚拟机jvm启动后java代码层面发生了什么?

    java虚拟机jvm启动后java代码层面发生了什么? 0000 我想验证的事情 java代码在被编译后可以被jdk提供的java命令进行加载和运行, 在我们的程序被运行起来的时候,都发生了什么事情, ...

  10. 编写windows服务程序

    2012-11-02 08:54 (分类:计算机程序) windows服务是一个运行在后台并实现勿需用户交互的任务的控制台程序,对于隐藏程序有很大帮助. 用了几天时间概括了编写windows服务程序的 ...