Chapter 3 数学与简单DP

上取整:

a / b //下取整
(a + b - 1) / b //上取整

+++

  • 数学

1.买不到的数目 1205
//如果不知道公式,可以暴搜打表找规律(★)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; bool dfs(int u, int n, int m)
{
if(!u) return true;
if(u >= n && dfs(u - n, n, m)) return true;
if(u >= m && dfs(u - m, n, m)) return true;
return false;
} int main()
{
int n, m;
int res = 0;
cin >> n >> m;
for(int i = 0; i <= 1000; i++)
if(!dfs(i, n, m)) res = i;
cout << res << endl;
return 0;
}
/*打表
3 4 5
3 5 7
3 7 11
3 8 13
3 10 17
*/
AC code
#include <iostream>

using namespace std;

int main()
{
int n, m;
cin >> n >> m;
cout << (n - 1) * (m - 1) - 1 << endl;//公式,记住
return 0;
}
2.蚂蚁感冒 1211
//脑筋急转弯,,换位思考
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 55;
int ant[maxn];
int n; int main()
{
cin >> n;
for(int i = 0; i < n; i++ ) cin >> ant[i];
int left = 0, right = 0;
for(int i = 1; i < n; i++ )
{
if(abs(ant[i]) < abs(ant[0]) && ant[i] > 0) left ++;
if(abs(ant[i]) > abs(ant[0]) && ant[i] < 0) right ++;
}
if(ant[0] > 0 && right == 0 || ant[0] < 0 && left == 0) cout << 1 << endl;
else cout << left + right + 1 << endl;
return 0;
}
3.饮料换购 1216
//小学数学题
#include <iostream> using namespace std; int sum, m; void dfs(int u)
{
if(u < 3) return;
sum += u / 3;
dfs(u / 3 + u % 3);
} int main()
{
cin >> m;
sum = m;
dfs(m);
cout << sum << endl;
}
  • 简单DP

1.状态表示 : 数组元素 表示的是一个集合,存的当前集合的属性

i为行下标 j为列下标 表示只从前i个物品中选,物品总体积<= j

2.状态计算

集合的划分

1.01背包问题 2
//无优化版
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 1010;
int f[maxn][maxn];//代表集合,存放符合需要的数据
int v[maxn], w[maxn];
int m, n; int main()
{
cin >> m >> n;
for(int i = 1; i <= m; i++ ) cin >> v[i] >> w[i];
for(int i = 1; i <= m; i++ )
for(int j = 0; j <= n; j++ )
{
f[i][j] = f[i - 1][j];//不选第i个的情况
//选择第i个的情况
if(j >= v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
cout <<f[m][n] << endl;
return 0;
}
//优化版本
/*
1. f[i] 仅用到了f[i-1]层,
2. j与j-v[i] 均小于j
3.若用到上一层的状态时,从大到小枚举, 反之从小到大
*/
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 1010;
int n, m;
int v[maxn], w[maxn];
int f[maxn]; int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++ ) cin >> v[i] >> w[i];
for(int i = 1; i <+ m; i++ )
for(int j = m; j >= v[i]; j--)//j从大到小
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[m] << endl;
return 0;
}
2.摘花生 1015
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxn = 105;
int f[maxn][maxn], w[maxn][maxn];//f[][]为存放路线与路线最大值的二维数组
int m, n;
int T; int main()
{
cin >> T;
while(T--)
{
scanf("%d%d", &m, &n);
for(int i = 1; i <= m; i++ )
for(int j = 1; j <= n; j++ )
scanf("%d", &w[i][j]); for(int i = 1; i <= m; i++ )
for(int j = 1; j <= n; j++ )
f[i][j] = max(f[i - 1][j], f[i][j - 1]) + w[i][j];
//f[i][j]为上一步最大值加上w[i][j]的花生数目
cout << f[m][n] << endl;
}
return 0;
}
3.最长上升子序列 895
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 1010;
int a[maxn], b[maxn];
int n, res; int main()
{
cin >> n;
for(int i = 1; i <= n; i++ )cin >> a[i]; for(int i = 1; i <= n; i++ )
{
b[i] = 1;
for(int j = 1; j < i; j++ )
if(a[j] < a[i]) b[i] = max(b[i], b[j] + 1);
res = max(res, b[i]);
} cout << res << endl;
return 0;
}
4.地宫取宝 1212

这题是最大上升子序列加上摘花生的结合版本,要考虑的东西变多了。

1.要考虑每次拿的宝物的价值与最大上升子序列类似,只不过序列数是固定的

2.4维dp,i j k v 分别表示从起点走到坐标i j,捡起来了k件宝物,宝物的最大价值是v

3.起点的初始化问题

#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 55, MOD = 1e9 + 7;
int w[maxn][maxn];
int f[maxn][maxn][13][14];
int n, m, k; int main()
{
cin >> m >> n >> k;
for(int i = 1; i <= m; i++ )
for(int j = 1; j <= n; j++ )
{
scanf("%d", &w[i][j]);
w[i][j]++;
}
f[1][1][0][0] = 1;//初始化
f[1][1][1][w[1][1]] = 1; for(int i = 1; i <= m; i++ )
for(int j = 1; j <= n; j++ )
{
if(i == 1 && j == 1) continue;//因为[1][1]已经初始化过,可无
for(int u = 0; u <= k; u++ )
for(int v = 0; v <= 13; v++ )
{
int &val = f[i][j][u][v];//引用使代码看起来简洁
//不选w[i][j]的两种情况
val = (val + f[i - 1][j][u][v]) % MOD;
val = (val + f[i][j - 1][u][v]) % MOD; if(u > 0 && v == w[i][j])//选w[i][j]的两种情况
{
for(int c = 0; c < v; c++ )
{
val = (val + f[i - 1][j][u - 1][c]) % MOD;
val = (val + f[i][j - 1][u - 1][c]) % MOD;
}
}
}
}
int res = 0;
for(int v = 0; v <= 13; v ++ ) res = (res + f[m][n][k][v]) % MOD; cout << res << endl;
return 0; }
5.波动数列 1214

设第一项为x,di 为+a或者-b,则序列可以表示为:

x , x + d1, x + d1 + d2, ... , x + d(n-1)

则s = n * x + (n - 1)d1 + (n - 2)d2 + ... + d(n - 1)

因为x的取值范围为R,因此想到用其他变量表示x,而且方面起见,将d的序号反过来

x = [s - (d1 + 2d2 + 3d3 + ... + (n - 1)d(n - 1))] / n

首先可以知道一组合法的di序列对应一个唯一的x,所以题目问题也就是问有多少组合法的di序列

其次因为x是整数,所以又可以转换为有多少组di序列使得上式的分子mod n余数相等

//f[i][j]表示前i组di序列mod n的余数为j的序列数的总和
//设前i-1项mod n为c,则f[i][j]项mod n的值就是 c + i * a = j mod n,
//因此c为(j - a * i) mod n
#include <iostream>
#include <algorithm>
#include <cstring> using namespace std; const int maxn = 1010, MOD = 100000007;
int f[maxn][maxn];//第二维表示mod n为 j的序列和 int get_mod(int x, int y)//确保mod的余数全部为整数,防止数组越界
{
return (x % y + y) % y;
} int main()
{
int n, s, a, b;
cin >> n >> s >> a >> b; f[0][0] = 1;//初始化
for(int i = 1; i < n; i++ )
for(int j = 0; j < n; j ++ )
f[i][j] = (f[i - 1][get_mod(j - a * (n - i), n)] + f[i - 1][get_mod(j + b * (n - i), n)]) % MOD;
//最后要输出的是前n - 1 项序列和mod n的数值为 get_mod(s, n)的合法序列数目
cout << f[n - 1][get_mod(s, n)] << endl;
return 0;
}

Chapter3数学与简单DP的更多相关文章

  1. HDU 1087 简单dp,求递增子序列使和最大

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. Codeforces Round #260 (Div. 1) A. Boredom (简单dp)

    题目链接:http://codeforces.com/problemset/problem/455/A 给你n个数,要是其中取一个大小为x的数,那x+1和x-1都不能取了,问你最后取完最大的和是多少. ...

  3. codeforces Gym 100500H A. Potion of Immortality 简单DP

    Problem H. ICPC QuestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100500/a ...

  4. 简单dp --- HDU1248寒冰王座

    题目链接 这道题也是简单dp里面的一种经典类型,递推式就是dp[i] = min(dp[i-150], dp[i-200], dp[i-350]) 代码如下: #include<iostream ...

  5. poj2385 简单DP

    J - 简单dp Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bit ...

  6. hdu1087 简单DP

    I - 简单dp 例题扩展 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     ...

  7. poj 1157 LITTLE SHOP_简单dp

    题意:给你n种花,m个盆,花盆是有顺序的,每种花只能插一个花盘i,下一种花的只能插i<j的花盘,现在给出价值,求最大价值 简单dp #include <iostream> #incl ...

  8. hdu 2471 简单DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2571 简单dp, dp[n][m] +=(  dp[n-1][m],dp[n][m-1],d[i][k ...

  9. Codeforces 41D Pawn 简单dp

    题目链接:点击打开链接 给定n*m 的矩阵 常数k 以下一个n*m的矩阵,每一个位置由 0-9的一个整数表示 问: 从最后一行開始向上走到第一行使得路径上的和 % (k+1) == 0 每一个格子仅仅 ...

随机推荐

  1. Shell常用命令之read

    前言 Linux read命令用于从标准输入读取数值.read 内部命令被用来从标准输入读取单行数据.这个命令可以用来读取键盘输入,当使用重定向的时候,可以读取文件中的一行数据. 格式 read [- ...

  2. springIOC源码接口分析(十一):ConfigurableApplicationContext

    一 实现接口 关系图: ConfigurableApplicationContext接口实现了三个接口,ApplicationContext, Lifecycle, Closeable, Applic ...

  3. STL中的vector 和list

    参考书目:visual c++ 入门经典 第七版 Ivor Horton著 第十章 认识两个容器:vector和list 容器:是STL(Standard Template Library 标准模板库 ...

  4. Java 中的各种锁和 CAS + 面试题

    Java 中的各种锁和 CAS + 面试题 如果说快速理解多线程有什么捷径的话,那本文介绍的各种锁无疑是其中之一,它不但为我们开发多线程程序提供理论支持,还是面试中经常被问到的核心面试题之一.因此下面 ...

  5. javabst1

    (单选题)下列概念中不包括任何实现,与存储空间没有任何关系的是() A)类 B)接口 C)抽象类 D)对象 2.(单选题)HTTP状态码中表示请求资源不存在的是(). A)100 B)200 C)30 ...

  6. ATL的GUI程序设计(前言)

    前言 也许,你是一个顽固的SDK簇拥者: 也许,你对MFC抱着无比排斥的态度,甚至像我一样对它几乎一无所知: 也许,你符合上面两条,而且正在寻求着一种出路: 也许,你找到了一条出路--WTL,但是仍然 ...

  7. 20194653 面向对象基础3——static、this、包总结

    题目1:编写一个类Computer,类中含有一个求n的阶乘的方法.将该类打包,并在另一包中的Java文件App.java中引入包,在主类中定义Computer类的对象,调用求n的阶乘的方法(n值由参数 ...

  8. POJ_1050_最大子矩阵

    http://poj.org/problem?id=1050 这道题是最大子串的扩展,遍历过每一个子矩阵就好了,期间用了最大子串的方法. #include<iostream> #inclu ...

  9. 用python制作训练集和测试集的图片名列表文本

    # -*- coding: utf-8 -*- from pathlib import Path #从pathlib中导入Path import os import fileinput import ...

  10. Go语言实现:【剑指offer】序列化二叉树

    该题目来源于牛客网<剑指offer>专题. 请实现两个函数,分别用来序列化和反序列化二叉树. 二叉树的序列化是指:把一棵二叉树按照某种遍历方式的结果以某种格式保存为字符串,从而使得内存中建 ...