最短路径算法总结(floyd,dijkstra,bellman-ford)
继续复习数据结构和算法,总结一下求解最短路径的一些算法。
弗洛伊德(floyd)算法
弗洛伊德算法是最容易理解的最短路径算法,可以求图中任意两点间的最短距离,但时间复杂度高达\(O(n^3)\),主要思想就是如果想缩短从一个点到另一个点的距离,就必须借助一个中间点进行中转,比如A点到B点借助C点中转的话AB的距离就可以更新为\(D(a,b)=Min(D(a,b),D(a,c)+D(c,b))\),这样我们用每一个结点作为中转结点,尝试对另每两个结点进行距离更新,总共需要三层循环进行遍历。
核心代码如下,图存储在邻接矩阵G中。
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
for (int k = 0; k < n; k++)
{
G[j][k] = min(G[j][k], G[j][i] + G[i][k]);
}
}
}
迪杰斯特拉(Dijkstra)算法
迪杰斯特拉算法是一种求解单源最短路径的算法,给定一个结点,可以求出图上各个结点到该结点最短距离。
没学过的话推荐看看这个视频:https://www.bilibili.com/video/av21376839?p=13,从8分钟开始。看完之后基本上就明白了Dijkstra算法的运行过程。总结一下就是不断寻找离源点最近的点并将其作为新的源点去更新其他点到目标点的距离。
代码如下,nowIndex代表当前源点编号,minDis是当前源点到其他点的最短距离,用于选择下一个源点,dis数组存储每个点到最终目标点的距离,也就是结果,mark数组用于标记结点是否被当作源点过。
#include<iostream>
#include<algorithm>
using namespace std;
#define inf 100000000
int G[10][10];
int dis[10];
bool mark[10];
int n, m;
void dijkstra(int nowIndex)
{
mark[nowIndex] = true;
for (int i = 1; i <= n; i++)//先将跟源点直接相连的结点更新一遍
dis[i] = min(dis[i], G[nowIndex][i]);
for (int i = 1; i < n; i++)//循环n-1次,因为源点已经更新过了
{
int minDis = inf;
for (int j = 1; j <= n; j++)//找离当前源点最近的点
{
if (!mark[j] && dis[j] < minDis)
{
minDis = dis[j];
nowIndex = j;
}
}
mark[nowIndex] = true;
for (int j = 1; j <= n; j++)//用当前源点去更新
dis[j] = min(dis[j], dis[nowIndex] + G[nowIndex][j]);
}
}
int main()
{
cin >> n >> m;//输入顶点数和边数
int u, v, w;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (i != j)
G[i][j] = inf;
else
G[i][j] = 0;
for (int i = 1; i <= n; i++)
dis[i] = inf;
for (int i = 0; i < m; i++)
{
cin >> u >> v >> w;//输入无向边
G[u][v] = w;
G[v][u] = w;
}
dijkstra(1);//以1号结点为源点
for (int i = 1; i <= n; i++)
{
cout << dis[i] << ' ';
}
return 0;
}
邻接表实现
使用邻接表存储图能大大降低空间复杂度,代码如下:
#include<iostream>
#include<algorithm>
using namespace std;
#define inf 100000000
#define maxN 10000
int value[maxN], to[maxN], nextL[maxN];
int head[maxN], total;
int dis[maxN];
bool mark[maxN];
int n, m;
void dijkstra(int nowIndex)
{
for (int i = 0; i <= n; i++)dis[i] = inf;
dis[nowIndex] = 0;
mark[nowIndex] = true;
for (int i = head[nowIndex]; i; i = nextL[i])
{
dis[to[i]] = min(dis[to[i]], dis[nowIndex] + value[i]);
}
for (int i = 1; i < n; i++)//循环n-1次,因为源点已经更新过了
{
int minDis = inf;
for (int j = 1; j <= n; j++)//找离当前源点最近的点
{
if (!mark[j] && dis[j] < minDis)
{
minDis = dis[j];
nowIndex = j;
}
}
mark[nowIndex] = true;
for (int j = head[nowIndex]; j; j = nextL[j])
{
dis[to[j]] = min(dis[to[j]], dis[nowIndex] + value[j]);
}
}
}
void AddLine(int a, int b, int c)
{
total++;
to[total] = b;
value[total] = c;
nextL[total] = head[a];
head[a] = total;
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
AddLine(a, b, c);
}
dijkstra(1);
for (int i = 1; i <= n; i++)
cout << dis[i] << " ";
return 0;
}
堆优化
普通的Dijkstra时间复杂度为\(O(n^2)\),但可以通过优化达到\(O(nlogn)\),注意在上面的循环中我们每次都要取出离当前源点最近的点,所以可以用优先级队列来优化。每次搜索将修改过dis的点进队,然后每次取队首就是最近的点。
代码如下:
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
#define inf 100000000
#define maxN 10010
int s;
int value[500001], to[500001], nextL[500001];
int head[maxN], total;
int dis[maxN];
bool mark[maxN];
int n, m;
typedef pair<int, int> disID;
priority_queue<disID,vector<disID>,greater<disID>> q;
void dijkstra(int nowIndex)
{
for (int i = 0; i <= n; i++)dis[i] = inf;
dis[nowIndex] = 0;
q.push(disID(0, nowIndex));
while (!q.empty())
{
int t = q.top().second;
q.pop();
if (mark[t])continue;
mark[t] = true;
for (int i = head[t]; i ; i=nextL[i])
{
if (dis[to[i]] > dis[t] + value[i])
{
dis[to[i]] = dis[t] + value[i];
q.push(disID(dis[to[i]], to[i]));
}
}
}
}
void AddLine(int a, int b, int c)
{
total++;
to[total] = b;
value[total] = c;
nextL[total] = head[a];
head[a] = total;
}
int main()
{
cin >> n >> m >> s;
for (int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
AddLine(a, b, c);
}
dijkstra(s);
for (int i = 1; i <= n; i++)
{
cout << dis[i] << ' ';
}
return 0;
}
Bellman-ford算法
上面的Dijkstra算法存在一个问题就是不能处理存在负权边的情况,只要有边的权值是负数就不能用,这时可以用Bellman-ford算法解决。
Bellman-ford算法的思想是这样的,我们将每条边的起点、权值、终点存储为三个数组from[i],val[i],to[i],然后扫描每一条边,看能不能通过走这条边来使dis[to[i]]减少。
代码很简单如下:
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
#define inf 100000000
int from[10000], val[10000], to[10000];
int dis[10000];
int n, m;
void Bellman_ford(int u)
{
for (int i = 0; i <= n; i++)dis[i] = inf;
dis[u] = 0;
while (true)
{
bool update = false;
for (int i = 1; i <= m; i++)
{
if (dis[from[i]] != inf && dis[to[i]] > dis[from[i]] + val[i])
{
dis[to[i]] = dis[from[i]] + val[i];//更新
update = true;
}
}
if (!update)break;//直到每一条边都不能使dis减少
}
}
int main()
{
cin >> n >> m ;
for (int i = 1; i <= m; i++)
{
cin >> from[i] >> to[i] >> val[i];
}
Bellman_ford(1);
for (int i = 1; i <= n; i++)
cout << dis[i] << ' ';
return 0;
}
算法中的while循环最多循环n-1次,所以Bellman-ford的时间复杂度是\(O(mn)\),不仅能处理负权边,而且在稀疏图(顶点数远多于边数)当中比Dijkstra快。
最短路径算法总结(floyd,dijkstra,bellman-ford)的更多相关文章
- 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)
一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...
- 最短路径算法之二——Dijkstra算法
Dijkstra算法 Dijkstra算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 注意该算法要求图中不存在负权边. 首先我们来定义一个二维数组Edge[MAXN][MAXN]来存储 ...
- 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板
一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...
- 最短路径算法之一——Floyd算法
Floyd算法 Floyd算法可以用来解决任意两个顶点之间的最短路径问题. 核心公式为: Edge[i][j]=Min{Edge[i][j],Edge[i][k]+Edge[k][j]}. 即通过对i ...
- 多源最短路径算法:Floyd算法
前言 由于本人太菜,这里不讨论Floyd的正确性. 简介 多源最短路径,解决的是求从图中任意两点之间的最短路径的问题. 分析 代码短小精悍,主要代码只有四行,直接放上: for(int k=1;k&l ...
- 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson
根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- 图论——最短路径 Dijkstra算法、Floyd算法
1.弗洛伊德算法(Floyd) 弗洛伊算法核心就是三重循环,M [ j ] [ k ] 表示从 j 到 k 的路径,而 i 表示当前 j 到 k 可以借助的点:红色部分表示,如果 j 到 i ,i 到 ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
随机推荐
- 2.5D(伪3D)站点可视化第一弹
楔子 最近要做一个基站站点的可视化呈现项目. 我们首先尝试的是三维的可视化技术来程序,但是客户反馈的情况是他们的客户端电脑比较差,性能效率都会不好,甚至有的还是云主机. 因此我们先做了一个性能比较极致 ...
- MySql Docker的一些操作方法
偶尔有需求,涉及到数据库的改动,那一定要表结构改动.程序调试都先在测试环境淬炼千百遍. 现在流行微服务.docker部署,很容易拉起一整套环境. Compose File Demo mysql: im ...
- NR / 5G - MAC Overview
- 数据算法 --hadoop/spark数据处理技巧 --(3.左外连接 4.反转排序)
三. 左外连接 考虑一家公司,比如亚马逊,它拥有超过2亿的用户,每天要完成数亿次交易.假设我们有两类数据,用户和交易: users(user_id,location_id) transactions( ...
- wow.js wow.min.js animate.css animate.min.css
奉献给下载不到源码的小伙伴,下载到的请忽视 wow.js (function() { var MutationObserver, Util, WeakMap, getComputedStyle, ge ...
- Dynamics 365 marketing中添加自定义渠道磁贴
Dynamics 365 marketing中默认的渠道只有Marketing Email和Marketing Activity,想要添加其他渠道必须自定义磁贴,自定义磁贴的步骤如下: 1.创建实体 ...
- Linux安装Redis、后台运行、系统自启动
Redis是用C语言编写的开源免费的高性能的分布式内存数据库,基于内存运行并支持持久化的NoSQL数据库. 安装 1)从官网http://download.redis.io/releases/下载re ...
- asp.net abp模块化开发之通用树2:设计思路及源码解析
一.前言 上一篇大概说了下abp通用树形模块如何使用,本篇主要分析下设计思路. 日常开发中会用到很多树状结构的数据,比如:产品的多级分类.省市区县,大多数系统也会用到类似“通用字典/数据字典”的功能, ...
- C#方法中的各类参数
居家隔离的第26天,还在持续的疫情着实让人担忧,看着每天新增的确认人数数字,也在为那些家庭祝福,每当想想那不是一个数字是一条条鲜活的生命时就格外沉重.利用闲在家里的时间巩固C#语言的一个难点.最近在温 ...
- java.math包下计算浮点数和整数的类
(1)BigIntege:实现任意精度的整数运算.(2)BigDecimal:实现任意精度的浮点运算. 例如: 使用BigDecimal进行浮点数比较 import java.math.BigDeci ...