继续复习数据结构和算法,总结一下求解最短路径的一些算法。

弗洛伊德(floyd)算法

弗洛伊德算法是最容易理解的最短路径算法,可以求图中任意两点间的最短距离,但时间复杂度高达\(O(n^3)\),主要思想就是如果想缩短从一个点到另一个点的距离,就必须借助一个中间点进行中转,比如A点到B点借助C点中转的话AB的距离就可以更新为\(D(a,b)=Min(D(a,b),D(a,c)+D(c,b))\),这样我们用每一个结点作为中转结点,尝试对另每两个结点进行距离更新,总共需要三层循环进行遍历。

核心代码如下,图存储在邻接矩阵G中。

	for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
for (int k = 0; k < n; k++)
{
G[j][k] = min(G[j][k], G[j][i] + G[i][k]);
}
}
}

迪杰斯特拉(Dijkstra)算法

迪杰斯特拉算法是一种求解单源最短路径的算法,给定一个结点,可以求出图上各个结点到该结点最短距离。

没学过的话推荐看看这个视频:https://www.bilibili.com/video/av21376839?p=13,从8分钟开始。看完之后基本上就明白了Dijkstra算法的运行过程。总结一下就是不断寻找离源点最近的点并将其作为新的源点去更新其他点到目标点的距离。

代码如下,nowIndex代表当前源点编号,minDis是当前源点到其他点的最短距离,用于选择下一个源点,dis数组存储每个点到最终目标点的距离,也就是结果,mark数组用于标记结点是否被当作源点过。

#include<iostream>
#include<algorithm>
using namespace std; #define inf 100000000 int G[10][10];
int dis[10];
bool mark[10];
int n, m; void dijkstra(int nowIndex)
{
mark[nowIndex] = true;
for (int i = 1; i <= n; i++)//先将跟源点直接相连的结点更新一遍
dis[i] = min(dis[i], G[nowIndex][i]);
for (int i = 1; i < n; i++)//循环n-1次,因为源点已经更新过了
{
int minDis = inf;
for (int j = 1; j <= n; j++)//找离当前源点最近的点
{
if (!mark[j] && dis[j] < minDis)
{
minDis = dis[j];
nowIndex = j;
}
}
mark[nowIndex] = true;
for (int j = 1; j <= n; j++)//用当前源点去更新
dis[j] = min(dis[j], dis[nowIndex] + G[nowIndex][j]);
}
} int main()
{
cin >> n >> m;//输入顶点数和边数
int u, v, w;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (i != j)
G[i][j] = inf;
else
G[i][j] = 0;
for (int i = 1; i <= n; i++)
dis[i] = inf;
for (int i = 0; i < m; i++)
{
cin >> u >> v >> w;//输入无向边
G[u][v] = w;
G[v][u] = w;
}
dijkstra(1);//以1号结点为源点
for (int i = 1; i <= n; i++)
{
cout << dis[i] << ' ';
} return 0;
}

邻接表实现

使用邻接表存储图能大大降低空间复杂度,代码如下:

#include<iostream>
#include<algorithm>
using namespace std; #define inf 100000000
#define maxN 10000 int value[maxN], to[maxN], nextL[maxN];
int head[maxN], total;
int dis[maxN];
bool mark[maxN];
int n, m; void dijkstra(int nowIndex)
{
for (int i = 0; i <= n; i++)dis[i] = inf;
dis[nowIndex] = 0;
mark[nowIndex] = true;
for (int i = head[nowIndex]; i; i = nextL[i])
{
dis[to[i]] = min(dis[to[i]], dis[nowIndex] + value[i]);
}
for (int i = 1; i < n; i++)//循环n-1次,因为源点已经更新过了
{
int minDis = inf;
for (int j = 1; j <= n; j++)//找离当前源点最近的点
{
if (!mark[j] && dis[j] < minDis)
{
minDis = dis[j];
nowIndex = j;
}
}
mark[nowIndex] = true;
for (int j = head[nowIndex]; j; j = nextL[j])
{
dis[to[j]] = min(dis[to[j]], dis[nowIndex] + value[j]);
}
}
} void AddLine(int a, int b, int c)
{
total++;
to[total] = b;
value[total] = c;
nextL[total] = head[a];
head[a] = total;
} int main()
{
cin >> n >> m;
for (int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
AddLine(a, b, c);
}
dijkstra(1);
for (int i = 1; i <= n; i++)
cout << dis[i] << " "; return 0;
}

堆优化

普通的Dijkstra时间复杂度为\(O(n^2)\),但可以通过优化达到\(O(nlogn)\),注意在上面的循环中我们每次都要取出离当前源点最近的点,所以可以用优先级队列来优化。每次搜索将修改过dis的点进队,然后每次取队首就是最近的点。

代码如下:

#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std; #define inf 100000000
#define maxN 10010 int s;
int value[500001], to[500001], nextL[500001];
int head[maxN], total;
int dis[maxN];
bool mark[maxN];
int n, m; typedef pair<int, int> disID;
priority_queue<disID,vector<disID>,greater<disID>> q; void dijkstra(int nowIndex)
{
for (int i = 0; i <= n; i++)dis[i] = inf;
dis[nowIndex] = 0;
q.push(disID(0, nowIndex));
while (!q.empty())
{
int t = q.top().second;
q.pop();
if (mark[t])continue;
mark[t] = true;
for (int i = head[t]; i ; i=nextL[i])
{
if (dis[to[i]] > dis[t] + value[i])
{
dis[to[i]] = dis[t] + value[i];
q.push(disID(dis[to[i]], to[i]));
}
}
}
} void AddLine(int a, int b, int c)
{
total++;
to[total] = b;
value[total] = c;
nextL[total] = head[a];
head[a] = total;
} int main()
{
cin >> n >> m >> s;
for (int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
AddLine(a, b, c);
}
dijkstra(s);
for (int i = 1; i <= n; i++)
{
cout << dis[i] << ' ';
} return 0;
}

Bellman-ford算法

上面的Dijkstra算法存在一个问题就是不能处理存在负权边的情况,只要有边的权值是负数就不能用,这时可以用Bellman-ford算法解决。

Bellman-ford算法的思想是这样的,我们将每条边的起点、权值、终点存储为三个数组from[i],val[i],to[i],然后扫描每一条边,看能不能通过走这条边来使dis[to[i]]减少。

代码很简单如下:

#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std; #define inf 100000000
int from[10000], val[10000], to[10000];
int dis[10000];
int n, m; void Bellman_ford(int u)
{
for (int i = 0; i <= n; i++)dis[i] = inf;
dis[u] = 0;
while (true)
{
bool update = false;
for (int i = 1; i <= m; i++)
{
if (dis[from[i]] != inf && dis[to[i]] > dis[from[i]] + val[i])
{
dis[to[i]] = dis[from[i]] + val[i];//更新
update = true;
}
}
if (!update)break;//直到每一条边都不能使dis减少
}
} int main()
{
cin >> n >> m ;
for (int i = 1; i <= m; i++)
{
cin >> from[i] >> to[i] >> val[i];
}
Bellman_ford(1);
for (int i = 1; i <= n; i++)
cout << dis[i] << ' ';
return 0;
}

算法中的while循环最多循环n-1次,所以Bellman-ford的时间复杂度是\(O(mn)\),不仅能处理负权边,而且在稀疏图(顶点数远多于边数)当中比Dijkstra快。

最短路径算法总结(floyd,dijkstra,bellman-ford)的更多相关文章

  1. 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)

    一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...

  2. 最短路径算法之二——Dijkstra算法

    Dijkstra算法 Dijkstra算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 注意该算法要求图中不存在负权边. 首先我们来定义一个二维数组Edge[MAXN][MAXN]来存储 ...

  3. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  4. 最短路径算法之一——Floyd算法

    Floyd算法 Floyd算法可以用来解决任意两个顶点之间的最短路径问题. 核心公式为: Edge[i][j]=Min{Edge[i][j],Edge[i][k]+Edge[k][j]}. 即通过对i ...

  5. 多源最短路径算法:Floyd算法

    前言 由于本人太菜,这里不讨论Floyd的正确性. 简介 多源最短路径,解决的是求从图中任意两点之间的最短路径的问题. 分析 代码短小精悍,主要代码只有四行,直接放上: for(int k=1;k&l ...

  6. 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson

    根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...

  7. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  8. 图论——最短路径 Dijkstra算法、Floyd算法

    1.弗洛伊德算法(Floyd) 弗洛伊算法核心就是三重循环,M [ j ] [ k ] 表示从 j 到 k 的路径,而 i 表示当前 j 到 k 可以借助的点:红色部分表示,如果 j 到 i ,i 到 ...

  9. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

随机推荐

  1. javascript检测客户端环境是否是pc端

    //isPC(): 检测客户端环境是否是pc端 function isPC(){ let userAgent = navigator.userAgent; let agents = ["An ...

  2. KubeSphere企业级分布式多租户容器管理平台

    KubeSphere企业级分布式多租户容器管理平台 KubeSphere安装部署2.1.0DEV版本

  3. CentOS7.x以上版本配置DNS失效解决办法

    这2周做实验,centos7.x经常出现yum安装软件包的时候找不到解析地址,提示如下错误 正在尝试其它镜像. Error downloading packages: pam-devel-1.1.8- ...

  4. 【全集】大数据Java基础

    课程介绍 本课程是由猎豹移动大数据架构师,根据Java在公司大数据开发中的实际应用,精心设计和打磨的大数据必备Java课程.通过本课程的学习大数据新手能够少走弯路,以较短的时间系统掌握大数据开发必备语 ...

  5. 实验一 GIT 代码版本管理

    实验一  GIT 代码版本管理 实验目的: 1)了解分布式分布式版本控制系统的核心机理: 2)   熟练掌握git的基本指令和分支管理指令: 实验内容: 1)安装git 2)初始配置git ,git ...

  6. junit测试的介绍和应用

    目录 1.junit测试简介 2.运行环境 3.测试过程 1.junit测试简介 JUnit是一个Java语言的单元测试框架.它由Kent Beck和Erich Gamma建立,逐渐成为源于Kent ...

  7. git系列之---工作中项目的常用git操作

    0.本地git的安装 官网下载 1.git 配置 git config user.name  查看 用户名 git config user.email   查看 邮箱 git config --glo ...

  8. Git用法(一)

    一.通过本地管理推送到github(仓库本来有文件) 1.clone到本地git clone 我的GitHub地址(ssh地址)(ps:新增文件一定要切换到项目目录下再操作)2.提交到本地仓库(1)g ...

  9. Django 系列

    Django基础 Django框架简介 Django 静态文件 Django request对象与ORM简介 Django路由系统 Django之视图层 Django之模板层 Django的setti ...

  10. Win环境下安装vue及运行vue开发的前端项目

    vue安装及配置 首先下载node.js要求版本在8.9以上        官网:https://nodejs.org/zh-cn/ 下载完可检查在windows任务命令行里输入node -v 使用淘 ...