Background
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4
大意是求点1到n所有路径里最大的最短边权值。可以用堆优化的Dijkstra跑过。不同的是这里d数组的含义以及松弛操作都有所不同。这里d[i]代表从1到i所有路径最小边里最大的边的权值。松弛条件改为if(d[y]<min(d[x],z))d[y]=min(d[x],z).
要注意的是:
1.d数组要初始化为-INF,因为要求的是d[n]让其尽可能大。
2.d[1]要初始化为INF。因为如果按照dij模板初始化d[1]为0,第一次取出的是1号点,这时候d[y]为-INF,必然小于min(d[x],z),因为d[x]在第一次等于d[1]等于0,所以最终d数组将全部为0,得不到答案。
2.pair的第一维不用加负号,因为优先队列应该先让大的出来,所以不用按照蓝书上那样让其变为小根堆。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <cstring>
#include <queue>
using namespace std;
const int N=,M=;//两倍存双向边
int head[N],ver[M],edge[M],Next[M],d[N];
bool v[N];
int n,m,tot=;
priority_queue<pair<int,int> >q;
void add(int x,int y,int z)
{
ver[++tot]=y,edge[tot]=z,Next[tot]=head[x],head[x]=tot;
}
void dijkstra()
{
memset(d,-0x3f,sizeof(d));
memset(v,,sizeof(v));
d[]=;
q.push(make_pair(,));
while(q.size())
{
int x=q.top().second;
q.pop();
if(v[x])continue;
v[x]=;
int i;
for(i=head[x];i;i=Next[i])
{
int y=ver[i];
int z=edge[i];
if(d[y]<min(d[x],z))
{
d[y]=min(d[x],z);
q.push(make_pair(d[y],y));
}
}
}
}
int main()
{
int t;
cin>>t;
int i,j,k;
for(i=;i<=t;i++)
{
tot=;
while(q.size())q.pop();
memset(head,,sizeof(head));
memset(Next,,sizeof(Next));
scanf("%d%d",&n,&m);
for(j=;j<=m;j++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
dijkstra();
printf("Scenario #%d:\n",i);
cout<<d[n]<<endl;
cout<<endl;
}
}

POJ1797 Heavy Transportation (堆优化的Dijkstra变形)的更多相关文章

  1. poj1797 - Heavy Transportation(最大边,最短路变形spfa)

    题目大意: 给你以T, 代表T组测试数据,一个n代表有n个点, 一个m代表有m条边, 每条边有三个参数,a,b,c表示从a到b的这条路上最大的承受重量是c, 让你找出一条线路,要求出在这条线路上的最小 ...

  2. Heavy Transportation POJ 1797 最短路变形

    Heavy Transportation POJ 1797 最短路变形 题意 原题链接 题意大体就是说在一个地图上,有n个城市,编号从1 2 3 ... n,m条路,每条路都有相应的承重能力,然后让你 ...

  3. 堆优化的Dijkstra

    SPFA在求最短路时不是万能的.在稠密图时用堆优化的dijkstra更加高效: typedef pair<int,int> pii; priority_queue<pii, vect ...

  4. POJ--1797 Heavy Transportation (最短路)

    题目电波: POJ--1797 Heavy Transportation n点m条边, 求1到n最短边最大的路径的最短边长度 改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径 ...

  5. 朴素版和堆优化版dijkstra和朴素版prim算法比较

    1.dijkstra 时间复杂度:O(n^2) n次迭代,每次找到距离集合S最短的点 每次迭代要用找到的点t来更新其他点到S的最短距离. #include<iostream> #inclu ...

  6. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  7. POJ1797 Heavy Transportation 【Dijkstra】

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 21037   Accepted:  ...

  8. (Dijkstra) POJ1797 Heavy Transportation

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 53170   Accepted:  ...

  9. 学习笔记·堆优化$\mathscr{dijkstra}$

    嘤嘤嘤今天被迫学了这个算法--其实对于学习图论来说我内心是拒绝的\(\mathscr{qnq}\) 由于发现关于这个\(\mathscr{SPFA}\)的时间复杂度\(O(kE)\)中的\(k \ap ...

随机推荐

  1. ABB工业机器人(条件执行数字信号判断,画方or画圆)

    一.前戏 条件:从安全点,到工具区域夹取工具(笔),到工作区域,判断数字信号 Di1 =1 ,Ture :画方,False:画圆,回到工具区域放下工具(笔),回到安全点 二. 准备工作 校准tcp工具 ...

  2. Java8 Time API与老Date之间的转换

    前面我已经总结了Java8 Time API常用的一些方法.封装的工具类,可是最近需要对一个比较老的项目进行重构,大致看了一下使用的Jdk还是7而且里面的时间工具类还是使用的Date和Calendar ...

  3. hdu 1532 Drainage Ditches(网络流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1532 题目大意是:农夫约翰要把多个小池塘的水通过池塘间连接的水渠排出去,从池塘1到池塘M最多可以排多少 ...

  4. Python小白的零碎记录

    1 3.7往后iterable .iterator包都包含在collections.abc中了,记录一下 from collections.abc import Iterable,Iterator p ...

  5. IntelliJ IDEA 2017.3尚硅谷-----自动导包

  6. 线性筛-euler,强大O(n)

    欧拉函数是少于或等于n的数中与n互质的数的数目 φ(1)=1(定义) 类似与莫比乌斯函数,基于欧拉函数的积性 φ(xy)=φ(x)φ(y) 由唯一分解定理展开显然,得证 精髓在于对于积性的应用: ){ ...

  7. 2.2 selenium:org.openqa.selenium.WebDriverException: f.QueryInterface is not a function

    来源: http://blog.csdn.net/qiyueqinglian/article/details/47813271 URL中地址写不全的时候,就会报如题错误. url必须是完整的,比如ht ...

  8. 移动端适配rem为单位的rem.js及个别设备设置了大字体模式,导致页面变形的处理方式

    这段时间内,涉及到的都是移动端开发,说到移动端开发,我们就会思考到,目前分辨率的问题,如果用px为单位的话,在不同移动设备和不同分辨率下,页面的效果可能会有所不同,甚至导致页面变形.所以在次我们就用到 ...

  9. Chrom Develop Extensions

    Chrome插件 Extensions are small software programs that customize the browsing experience. They enable ...

  10. iptables详解(3):增删改存

    总结一下iptables规则管理的增删改存命令: 1.添加规则: 1)在指定表的指定链的末尾添加一条规则,-A选项表示在末尾添加,-j表示采取的动作,例如DROP.REJECT.ACCEPT 命令语法 ...