概念:

  在工作中,大家可能会碰到这样一种情况:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是广义的,可以是类、函数、线程、进程等)。产生数据的模块,就形象地称为生产者;而处理数据的模块,就称为消费者。在生产者与消费者之间在加个缓冲区,我们形象的称之为仓库,生产者负责往仓库了进商品,而消费者负责从仓库里拿商品,这就构成了生产者消费者模式。    

  

  优点:

  1、解耦:

  假设生产者和消费者分别是两个类。如果让生产者直接调用消费者的某个方法,那 么生产者对于消费者就会产生依赖(也就是耦合)。将来如果消费者的代码发生变化, 可能会影响到生产者。而如果两者都依赖于某个缓冲区,两者之间不直接依赖,耦合也 就相应降低了。

  举个例子,我们去邮局投递信件,如果不使用邮筒(也就是缓冲区),你必须得把 信直接交给邮递员。有同学会说,直接给邮递员不是挺简单的嘛?其实不简单,你必须 得认识谁是邮递员,才能把信给他(光凭身上穿的制服,万一有人假冒,就惨了)。这 就产生和你和邮递员之间的依赖(相当于生产者和消费者的强耦合)。万一哪天邮递员 换人了,你还要重新认识一下(相当于消费者变化导致修改生产者代码)。而邮筒相对 来说比较固定,你依赖它的成本就比较低(相当于和缓冲区之间的弱耦合)。

  2、支持并发

  由于生产者与消费者是两个独立的并发体,他们之间是用缓冲区作为桥梁连接,生产者只需要往缓冲区里丢数据,就可以继续生产下一个数据,而消费者只需要从缓冲区了拿数据即可,这样就不会因为彼此的处理速度而发生阻塞。

  接上面的例子,如果我们不使用邮筒,我们就得在邮局等邮递员,直到他回来,我们把信件交给他,这期间我们啥事儿都不能干(也就是生产者阻塞),或者邮递员得挨家挨户问,谁要寄信(相当于消费者轮询)。

  3、支持忙闲不均

  缓冲区还有另一个好处。如果制造数据的速度时快时慢,缓冲区的好处就体现出来 了。当数据制造快的时候,消费者来不及处理,未处理的数据可以暂时存在缓冲区中。 等生产者的制造速度慢下来,消费者再慢慢处理掉。

  为了充分复用,我们再拿寄信的例子来说事。假设邮递员一次只能带走1000封信。 万一某次碰上情人节(也可能是圣诞节)送贺卡,需要寄出去的信超过1000封,这时 候邮筒这个缓冲区就派上用场了。邮递员把来不及带走的信暂存在邮筒中,等下次过来 时再拿走。

  

  实现:

  GCD 和 信号量实现 生产者消费者模式:  

  GCD提供两种方式支持dispatch队列同步,即dispatch组和信号量。

  一、dispatch组(dispatch group

  // 1. 创建dispatch组
dispatch_group_t group = dispatch_group_create();
dispatch_queue_t queue = dispatch_queue_create("www.ztb.queue", DISPATCH_QUEUE_SERIAL);
// 2. 启动dispatch队列中的block关联到group中
dispatch_group_async(group, queue, ^{
// 。。。
}); // 3. 等待group关联的block执行完毕,也可以设置超时参数
dispatch_group_wait(group, DISPATCH_TIME_FOREVER); // 4. 为group设置通知一个block,当group关联的block执行完毕后,就调用这个block。类似dispatch_barrier_async。
dispatch_group_notify(group, queue, ^{
// 。。。
}); // 5. 手动管理group关联的block的运行状态(或计数),进入和退出group次数必须匹配
dispatch_group_enter(group);
dispatch_group_leave(group); // 所以下面的两种调用其实是等价的, //A)
dispatch_group_async(group, queue, ^{
// 。。。
}); // B)
dispatch_group_enter(group);
dispatch_async(queue, ^{
//。。。
dispatch_group_leave(group);
});

  dispatch_group_enter、 dispatch_group_leave和dispatch_group_wait来实现同步.

dispatch_group_t group = dispatch_group_create();

MyCoreDataObject *coreDataObject;

dispatch_group_enter(group);
AFHTTPRequestOperation *operation1 = [[AFHTTPRequestOperation alloc] initWithRequest:request1];
[operation1 setCompletionBlockWithSuccess:^(AFHTTPRequestOperation *operation, id responseObject) {
coreDataObject.attribute1 = responseObject;
sleep();
dispatch_group_leave(group);
}];
[operation1 start]; dispatch_group_enter(group);
AFHTTPRequestOperation *operation2 = [[AFHTTPRequestOperation alloc] initWithRequest:request1];
[operation2 setCompletionBlockWithSuccess:^(AFHTTPRequestOperation *operation, id responseObject) {
coreDataObject.attribute2 = responseObject;
sleep();
dispatch_group_leave(group);
}];
[operation2 start]; dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
dispatch_release(group); [context save:nil];

  二、dispatch信号量(dispatch semaphore

   // 1. 创建信号量,可以设置信号量的资源数。0表示没有资源,调用dispatch_semaphore_wait会立即等待。
dispatch_semaphore_t semaphore = dispatch_semaphore_create(); // 2. 等待信号,可以设置超时参数。该函数返回0表示得到通知,非0表示超时。
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER); //3. 通知信号,如果等待线程被唤醒则返回非0,否则返回0。
dispatch_semaphore_signal(semaphore);

  使用dispatch信号量是如何实现同步:

  NSCondition *condition = [[NSCondition alloc] init];//使用NSCondition实现多线程同步的问题,也就是解决生产者消费者问题(如收发同步等等)。
dispatch_semaphore_t sem = dispatch_semaphore_create();
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, ), ^{ //消费者队列
while (condition) {
if (dispatch_semaphore_wait(sem, dispatch_time(DISPATCH_TIME_NOW, *NSEC_PER_SEC))) //等待10秒
continue;
//得到数据
}
}); dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, ), ^{ //生产者队列
while (condition) {
if (!dispatch_semaphore_signal(sem)) {
sleep(); //wait for a while
continue;
}
//通知成功
}
});

  

// 生产者生产数据
-(void)producerHandle {
while () {
NSString *currentThreadName = [NSThread currentThread].name;
// NSLog(@"%@" ,currentThreadName); //生产者限制生产数
[self.cond lock];
if (self.productNum > ) {
NSLog(@"!!!!生产太多,限制");
[self.cond unlock];
sleep();
continue;
}else {
[self.cond unlock];
} [self.cond lock];
NSLog(@"============================");
NSLog(@"%@...Begin - %d" ,currentThreadName ,self.productNum);
self.productNum++;
[self.cond signal];
NSLog(@"%@...end - %d" ,currentThreadName ,self.productNum);
NSLog(@"============================");
[self.cond unlock];
}
} // 消费者消费资源
-(void)customerHandle {
while () {
NSString *currentThreadName = [NSThread currentThread].name;
// NSLog(@"%@" ,currentThreadName);
[self.cond lock];
NSLog(@"============================");
NSLog(@"%@...Begin - %d" ,currentThreadName ,self.productNum);
while (self.productNum <= ) {
[self.cond wait];
}
self.productNum--;
NSLog(@"%@...end - %d" ,currentThreadName ,self.productNum);
NSLog(@"============================");
[self.cond unlock];
}
}

    

iOS 开发之 生产者与消费者模式及其实现的更多相关文章

  1. java 线程并发(生产者、消费者模式)

    线程并发协作(生产者/消费者模式) 多线程环境下,我们经常需要多个线程的并发和协作.这个时候,就需要了解一个重要的多线程并发协作模型“生产者/消费者模式”. Ø 什么是生产者? 生产者指的是负责生产数 ...

  2. 使用libuv实现生产者和消费者模式

    生产者和消费者模式(Consumer + Producer model) 用于把耗时操作(生产线程),分配给一个或者多个额外线程执行(消费线程),从而提高生产线程的响应速度(并发能力) 定义 type ...

  3. java生产者与消费者模式

    前言: 生产者和消费者模式是我们在学习多线程中很经典的一个模式,它主要分为生产者和消费者,分别是两个线程, 目录 一:生产者和消费者模式简介 二:生产者和消费者模式的实现 声明:本例来源于java经典 ...

  4. condition版生产者与消费者模式

    1.简介 在爬虫中,生产者与消费者模式是经常用到的.我能想到的比较好的办法是使用redis或者mongodb数据库构造生产者消费者模型.如果直接起线程进行构造生产者消费者模型,线程容易假死,也难以构造 ...

  5. Java并发编程(4)--生产者与消费者模式介绍

    一.前言 这种模式在生活是最常见的,那么它的场景是什么样的呢? 下面是我假象的,假设有一个仓库,仓库有一个生产者和一个消费者,消费者过来消费的时候会检测仓库中是否有库存,如果没有了则等待生产,如果有就 ...

  6. Java多线程设计模式(2)生产者与消费者模式

    1 Producer-Consumer Pattern Producer-Consumer Pattern主要就是在生产者与消费者之间建立一个“桥梁参与者”,用来解决生产者线程与消费者线程之间速度的不 ...

  7. 【爬虫】Condition版的生产者和消费者模式

    Condition版的生产者和消费者模式 threading.Condition 在没有数据的时候处于阻塞状态,有数据可以使用notify的函数通知等等待状态的线程运作 threading.Condi ...

  8. 【爬虫】Load版的生产者和消费者模式

    ''' Lock版的生产者和消费者模式 ''' import threading import random import time gMoney = 1000 # 原始金额 gLoad = thre ...

  9. java进阶(40)--wait与notify(生产者与消费者模式)

    文档目录: 一.概念 二.wait的作用 三.notify的作用 四.生产者消费者模式 五.举例 ---------------------------------------分割线:正文------ ...

随机推荐

  1. 美化传奇NPC对话框添加图片显示实列

    NPC对话框一般都是文字显示,有些GM想突出版本特色,在NPC对话框加些专业图片,彰显独特之处,其实这是很简单的.下面为你讲解美化传奇NPC对话框添加图片显示实列 我们要添加你要放入npc图片的补丁. ...

  2. jsp页面直接读取mysql数据库数据显示

    jsp页面直接读取mysql数据库数据显示: <%@page import="java.sql.ResultSet"%> <%@page import=" ...

  3. springmvc、springboot 参数校验

    参数校验在项目中是必不可少的,不仅前端需要校验,为了程序的可靠性,后端也需要对参数进行有效性的校验.下面将介绍在springmvc或springboot项目中参数校验的方法 准备工作: 引入校验需要用 ...

  4. 30分钟编写一个抓取 Unsplash 图片的 Python爬虫

       我一直想用 Python and Selenium 创建一个网页爬虫,但从来没有实现它. 几天前, 我决定尝试一下,这听起来可能是挺复杂的, 然而编写代码从 Unsplash 抓取一些美丽的图片 ...

  5. js加密(三)企名片

    1. url: https://www.qimingpian.cn/finosda/project/pinvestment 2. target: 3. 简单分析 3.1 打开调试窗口,刷新页面,看看都 ...

  6. 大小端(MSB & LSB)

    谈到字节序的问题,必然牵涉到两大CPU派系.那就是Motorola的PowerPC系列CPU和Intel的x86系列CPU.PowerPC系列采用big endian方式存储数据,而x86系列则采用l ...

  7. php 移动操作数组函数

    下面的几个主要是移动数组指针和压入弹出数组元素的和个函数. 函数 功能 array_shift 弹出数组中的第一个元素 array_unshift 在数组的开始处压入元素 array_push 向数组 ...

  8. scrapy下载 大文件处理

    # 一个校花网图片下载的案例,也适合大文件处理,多个文件视频,音频处理 工程流程 -- scrapy startproject xx cd xx scrapy genspider hh www.xx. ...

  9. jmeter实现服务器端后台接口性能测试

    实现目的 在进行服务器端后台接口性能测试时,需要连接到Linux服务器端,然后通过命令调用socket接口,这个过程就需要用到jmeter的SSH Command取样器实现了. 脚本实现 设置CSV ...

  10. LaTeX学习资源

    LaTeX入门 Beamer教程文档 数学公式大全