https://www.jiqizhixin.com/articles/2017-09-12-5

By 蒋思源2017年9月12日 09:54

时序数据经常出现在很多领域中,如金融、信号处理、语音识别和医药。传统的时序问题通常首先需要人力进行特征工程,才能将预处理的数据输入到机器学习算法中。并且这种特征工程通常需要一些特定领域内的专业知识,因此也就更进一步加大了预处理成本。例如信号处理(即 EEG 信号分类),特征工程可能就涉及到各种频带的功率谱(power spectra)、Hjorth 参数和其他一些特定的统计学特征。本文简要地介绍了使用 CNN 和 LSTM 实现序列分类的方法,详细代码请查看 Github。

Github 项目地址:https://github.com/healthDataScience/deep-learning-HAR

传统图像分类中也是采用的手动特征工程,然而随着深度学习的出现,卷积神经网络已经可以较为完美地处理计算机视觉任务。使用 CNN 处理图像不需要任何手动特征工程,网络会一层层自动从最基本的特征组合成更加高级和抽象的特征,从而完成计算机视觉任务。

在本文中,我们将讨论如何使用深度学习方法对时序数据进行分类。我们使用的案例是 UCI 项目中的人体活动识别(HAR)数据集。该数据集包含原始的时序数据和经预处理的数据(包含 561 个特征)。本文将对比用特征工程的机器学习算法和两种深度学习方法(卷积神经网络和循环神经网络),试验最后表明深度学习方法超越了传统使用特征工程的方法。

作者使用 TensorFlow 和实现并训练模型,文中只展示了部分代码,更详细的代码请查看 Github。

卷积神经网络(CNN)

首先第一步就是将数据馈送到 Numpy 中的数组,且数组的维度为 (batch_size, seq_len, n_channels),其中 batch_size 为模型在执行 SGD 时每一次迭代需要的数据量,seq_len 为时序序列的长度(本文中为 128),n_channels 为执行检测(measurement)的通道数。本文案例中通道数为 9,即 3 个坐标轴每一个有 3 个不同的加速检测(acceleration measurement)。我们有六个活动标签,即每一个样本属于 LAYING、STANDING、SITTING、WALKING_DOWNSTAIRS、WALKING_UPSTAIRS 或 WALKING。

下面,我们首先构建计算图,其中我们使用占位符为输入数据做准备:

graph = tf.Graph()

with graph.as_default():
inputs_ = tf.placeholder(tf.float32, [None, seq_len, n_channels],
name = 'inputs')
labels_ = tf.placeholder(tf.float32, [None, n_classes], name = 'labels')
keep_prob_ = tf.placeholder(tf.float32, name = 'keep')
learning_rate_ = tf.placeholder(tf.float32, name = 'learning_rate')

其中 inputs_是馈送到计算图中的输入张量,第一个参数设置为「None」可以确保占位符第一个维度可以根据不同的批量大小而适当调整。labels_是需要预测的 one-hot 编码标签,keep_prob_为用于 dropout 正则化的保持概率,learning_rate_ 为用于 Adam 优化器的学习率。

我们使用在序列上移动的 1 维卷积核构建卷积层,图像一般使用的是 2 维卷积核。序列任务中的卷积核可以充当为训练中的滤波器。在许多 CNN 架构中,层级的深度越大,滤波器的数量就越多。每一个卷积操作后面都跟随着池化层以减少序列的长度。下面是我们可以使用的简单 CNN 架构。

上图描述的卷积层可用以下代码实现:

with graph.as_default():
# (batch, 128, 9) -> (batch, 32, 18)
conv1 = tf.layers.conv1d(inputs=inputs_, filters=18, kernel_size=2, strides=1,
padding='same', activation = tf.nn.relu)
max_pool_1 = tf.layers.max_pooling1d(inputs=conv1, pool_size=4, strides=4, padding='same') # (batch, 32, 18) -> (batch, 8, 36)
conv2 = tf.layers.conv1d(inputs=max_pool_1, filters=36, kernel_size=2, strides=1,
padding='same', activation = tf.nn.relu)
max_pool_2 = tf.layers.max_pooling1d(inputs=conv2, pool_size=4, strides=4, padding='same') # (batch, 8, 36) -> (batch, 2, 72)
conv3 = tf.layers.conv1d(inputs=max_pool_2, filters=72, kernel_size=2, strides=1,
padding='same', activation = tf.nn.relu)
max_pool_3 = tf.layers.max_pooling1d(inputs=conv3, pool_size=4, strides=4, padding='same')

一旦到达了最后一层,我们需要 flatten 张量并投入到有适当神经元数的分类器中,在上图中为 144 个神经元。随后分类器输出 logits,并用于以下两种案例:

  1. 计算 softmax 交叉熵函数,该损失函数在多类别问题中是标准的损失度量。
  2. 在最大化概率和准确度的情况下预测类别标签。

下面是上述过程的实现:

with graph.as_default():
# Flatten and add dropout
flat = tf.reshape(max_pool_3, (-1, 2*72))
flat = tf.nn.dropout(flat, keep_prob=keep_prob_) # Predictions
logits = tf.layers.dense(flat, n_classes) # Cost function and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,
labels=labels_))
optimizer = tf.train.AdamOptimizer(learning_rate_).minimize(cost) # Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(labels_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

剩下的实现部分就比较典型了,读者可查看 GitHub 中的完整代码和过程。前面我们已经构建了计算图,后面就需要将批量训练数据馈送到计算图进行训练,同时我们还要使用验证集来评估训练结果。最后,完成训练的模型将在测试集上进行评估。我们在该实验中 batch_siza 使用的是 600、learning_rate 使用的是 0.001、keep_prob 为 0.5。在 500 个 epoch 后,我们得到的测试精度为 98%。下图显示了训练准确度和验证准确度随 epoch 的增加而显示的变化:

长短期记忆网络(LSTM)

LSTM 在处理文本数据上十分流行,它在情感分析、机器翻译、和文本生成等方面取得了十分显著的成果。因为本问题涉及相似分类的序列,所以 LSTM 是比较优秀的方法。

下面是能用于该问题的神经网络架构:

为了将数据馈送到网络中,我们需要将数组分割为 128 块(序列中的每一块都会进入一个 LSTM 单元),每一块的维度为(batch_size, n_channels)。随后单层神经元将转换这些输入并馈送到 LSTM 单元中,每一个 LSTM 单元的维度为 lstm_size,一般该参数需要选定为大于通道数量。这种方式很像文本应用中的嵌入层,其中词汇从给定的词汇表中嵌入为一个向量。后面我们需要选择 LSTM 层的数量(lstm_layers),我们可以设定为 2。

对于这一个实现,占位符的设定可以和上面一样。下面的代码段实现了 LSTM 层级:

with graph.as_default():
# Construct the LSTM inputs and LSTM cells
lstm_in = tf.transpose(inputs_, [1,0,2]) # reshape into (seq_len, N, channels)
lstm_in = tf.reshape(lstm_in, [-1, n_channels]) # Now (seq_len*N, n_channels) # To cells
lstm_in = tf.layers.dense(lstm_in, lstm_size, activation=None) # Open up the tensor into a list of seq_len pieces
lstm_in = tf.split(lstm_in, seq_len, 0) # Add LSTM layers
lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)
drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob_)
cell = tf.contrib.rnn.MultiRNNCell([drop] * lstm_layers)
initial_state = cell.zero_state(batch_size, tf.float32)

上面的代码段是十分重要的技术细节。我们首先需要将数组从 (batch_size, seq_len, n_channels) 重建维度为 (seq_len, batch_size, n_channels),因此 tf.split 将在每一步适当地分割数据(根据第 0 个索引)为一系列 (batch_size, lstm_size) 数组。剩下的部分就是标准的 LSTM 实现了,包括构建层级和初始状态。

下一步就是实现网络的前向传播和成本函数。比较重要的技术点是我们引入了梯度截断,因为梯度截断可以在反向传播中防止梯度爆炸而提升训练效果。

下面是我们定义前向传播和成本函数的代码:

with graph.as_default():
outputs, final_state = tf.contrib.rnn.static_rnn(cell, lstm_in, dtype=tf.float32,
initial_state = initial_state) # We only need the last output tensor to pass into a classifier
logits = tf.layers.dense(outputs[-1], n_classes, name='logits') # Cost function and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels_)) # Grad clipping
train_op = tf.train.AdamOptimizer(learning_rate_) gradients = train_op.compute_gradients(cost)
capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients]
optimizer = train_op.apply_gradients(capped_gradients) # Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(labels_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

注意我们只使用了 LSTM 顶层输出序列的最后一个元素,因为我们每个序列只是尝试预测一个分类概率。剩下的部分和前面我们训练 CNN 的过程相似,我们只需要将数据馈送到计算图中进行训练。其中超参数可选择为 lstm_size=27、lstm_layers=2、batch_size=600、learning_rate=0.0005 和 keep_prob=0.5,我们在测试集中可获得大约 95% 的准确度。这一结果要比 CNN 还差一些,但仍然十分优秀。可能选择其它超参数能产生更好的结果,读者朋友也可以在 Github 中获取源代码并进一步调试。

对比传统方法

前面作者已经使用带 561 个特征的数据集测试了一些机器学习方法,性能最好的方法是梯度提升树,如下梯度提升树的准确度能到达 96%。虽然 CNN、LSTM 架构与经过特征工程的梯度提升树的精度差不多,但 CNN 和 LSTM 的人工工作量要少得多。

HAR 任务经典机器学习方法:https://github.com/bhimmetoglu/talks-and-lectures/tree/master/MachineLearning/HAR

梯度提升树:https://rpubs.com/burakh/har_xgb

如何基于TensorFlow使用LSTM和CNN实现时序分类任务的更多相关文章

  1. RNN(二)——基于tensorflow的LSTM的实现

    lstm的前向结构,不迭代 最基本的lstm结构.不涉及损失值和bp过程 import tensorflow as tf import numpy as np inputs = tf.placehol ...

  2. 基于Tensorflow + Opencv 实现CNN自定义图像分类

    摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区< ...

  3. FaceRank-人脸打分基于 TensorFlow 的 CNN 模型

    FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...

  4. TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人

    简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为 ...

  5. 个基于TensorFlow的简单故事生成案例:带你了解LSTM

    https://medium.com/towards-data-science/lstm-by-example-using-tensorflow-feb0c1968537 在深度学习中,循环神经网络( ...

  6. TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人。

    简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为 ...

  7. ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]

    ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...

  8. Chinese-Text-Classification,用卷积神经网络基于 Tensorflow 实现的中文文本分类。

    用卷积神经网络基于 Tensorflow 实现的中文文本分类 项目地址: https://github.com/fendouai/Chinese-Text-Classification 欢迎提问:ht ...

  9. 学习Tensorflow的LSTM的RNN例子

    学习Tensorflow的LSTM的RNN例子 基于TensorFlow一次简单的RNN实现 极客学院-递归神经网络 如何使用TensorFlow构建.训练和改进循环神经网络

随机推荐

  1. 查看APP的下载量

    开发者账号登陆后:→用户中心→iTunes Connect→Sales Trend

  2. java并发基础(四)--- 取消与中断

    <java并发编程实战>的第7章是任务的取消与关闭.我觉得这一章和第6章任务执行同样重要,一个在行为良好的软件和勉强运行的软件之间的最主要的区别就是,行为良好的软件能很完善的处理失败.关闭 ...

  3. MikroTik RouterOS安装chr授权到阿里云虚拟机(转)

    CHR介绍 CHR(Cloud Hosted Router) 是用于在虚拟机上运行的 RouterOS 版本,它支持x86_64架构,支持大多数流行的虚拟化技术,如 VMWare, Hyper-V, ...

  4. MikroTik RouterOS U盘安装工具netinstall的使用

    注意: 1.此工具我没测试成功,比如把一个U盘用这个工具制作好之后,实质上插入电脑启动会有卡死现象,不太稳定. 2.其实官方提供的教程很大一部分是这样的意思,比如把外接硬盘以USB或者SATA的形式插 ...

  5. HDU 4813 Hard Code(水题,2013年长春现场赛A题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4813 签到题. 把一个字符串按照格式输出就可以了,很水 #include <stdio.h> ...

  6. 为什么MacBook装Windows这么火?

    Mac到底要不要装Windows?一直以来这都是个很有争议性的话题.只要你经常浏览国内一些知名Mac论坛,就会发现那里不仅有各种Mac装Windows教学贴.讨论区,而且时不时还会冒出关于“Mac装不 ...

  7. 在delphi中嵌入脚本语言--(译)RemObjects Pascal Script使用说明(1)(译)

    翻譯這篇文章源於我的一個通用工資計算平台的想法,在工資的計算中,不可避免的需要使用到自定義公式,然而對於自定義公式的實現,我自己想了一些,也在網上搜索了很多,解決辦法大致有以下幾種: 1. 自己寫代碼 ...

  8. UIProgressView 详解

    自定义progressView   包括背景图片和进度条的图片以及进度条的高度. //进度条 UIProgressView *aProgressView = [[UIProgressView allo ...

  9. 快速将wax配置到项目中进行lua开发

    通过Finder浏览到你保存该项目的文件夹.创建三个新的文件夹:wax.scripts和Classes. 第一:首先,下载源代码的压缩包.Wax放在GitHub上(https://github.com ...

  10. [CALayer release]: message sent to deallocated instance

    遇到此问题时,查看以下类的dealloc方法中是否有过度释放. 可以在release前先判断以下对象是否还存在. -(void)dealloc { if (!m_tableView) [m_table ...