GPU版的Tensorflow无疑是深度学习的一大神器,当然caffe之类的框架也可以用GPU来加速训练。

注意:以下安装默认为python2.7

1. 安装依赖包

$ sudo apt-get install openjdk-8-jdk git python-dev python3-dev python-numpy python3-numpy python-six python3-six build-essential python-pip python3-pip python-virtualenv swig python-wheel python3-wheel libcurl3-dev libcupti-dev

其中openjdk是必须的,不然在之后配置文件的时候会报错。

2. 安装CUDA和cuDNN

这两个是NVIDIA开发的专门用于机器学习的底层计算框架,通过软硬件的加成达到深度学习吊打I卡的神功。

安装的CUDA和cuDNN版本以来所选用的显卡,可以在这里查询。这里我们用的是GeForce 1080ti,所以对应的版本为CUDA8.0(.run版本)(这里下载)和cuDNN6.0(这里下载)。

# 安装cuda
$ wget https://developer.nvidia.com/compute/cuda/8.0/Prod2/local_installers/cuda_8.0.61_375.26_linux-run
$ sudo sh cuda_8.0.61_375.26_linux.run --override --silent --toolkit # 安装的cuda在/usr/local/cuda下面
# 安装cdDNN
$ cd /usr/local/cuda # cuDNN放在这个目录下解压
$ tar -xzvf cudnn-8.0-linux-x64-v6.0.tgz
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

然后将将一下路径加入环境变量:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda

即将上述代码放入~/.bashrc文件保存后source ~/.bashrc

3. 安装Tensorflow

自从tensorflow 1.0版正式发布以后,安装已经非常容易,在安装CUDA和cuDNN之后,只需以下两步即可安装GPU版本的tf:

$ sudo apt-get install python-pip python-dev
$ pip install tensorflow-gpu

但是用这种方法安装的会在运行的时候报一下警告:



这是由于用默认安装是没有编译上面这4个库,需要手动编译。

3.1 安装bazel

$ echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
$ curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -
$ sudo apt-get update
$ sudo apt-get install bazel

3.2 clone tf

$ git clone https://github.com/tensorflow/tensorflow
$ cd tensorflow
$ git checkout r1.1 # 选择tf 1.1版本

3.3 配置tf

$ ./configure # 以下是一个例子
Please specify the location of python. [Default is /usr/bin/python]: y
Invalid python path. y cannot be found
Please specify the location of python. [Default is /usr/bin/python]:
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]:
Do you wish to use jemalloc as the malloc implementation? [Y/n] y
jemalloc enabled
Do you wish to build TensorFlow with Google Cloud Platform support? [y/N] n
No Google Cloud Platform support will be enabled for TensorFlow
Do you wish to build TensorFlow with Hadoop File System support? [y/N] y
Hadoop File System support will be enabled for TensorFlow
Do you wish to build TensorFlow with the XLA just-in-time compiler (experimental)? [y/N] n
No XLA JIT support will be enabled for TensorFlow
Found possible Python library paths:
/usr/local/lib/python2.7/dist-packages
/usr/lib/python2.7/dist-packages
Please input the desired Python library path to use. Default is [/usr/local/lib/python2.7/dist-packages] Using python library path: /usr/local/lib/python2.7/dist-packages
Do you wish to build TensorFlow with OpenCL support? [y/N] n
No OpenCL support will be enabled for TensorFlow
Do you wish to build TensorFlow with CUDA support? [y/N] y
CUDA support will be enabled for TensorFlow
Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]:
Please specify the CUDA SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: 8.0
Please specify the location where CUDA 8.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify the Cudnn version you want to use. [Leave empty to use system default]: 5
Please specify the location where cuDNN 5 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.
[Default is: "3.5,5.2"]: 6.1
INFO: Starting clean (this may take a while). Consider using --expunge_async if the clean takes more than several minutes.
........
INFO: All external dependencies fetched successfully.
Configuration finished

3.4 build tf

为了编译之前提到的SSE4.1, SSE4.2, AVX, AVX2, FMA,用bazel build的时候设置参数如下(具体可以参考这里):

$ bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=-mfpmath=both --copt=-msse4.2 --config=cuda -k //tensorflow/tools/pip_package:build_pip_package

3.5 封装tf

$ bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

3.6 安装tf

$ sudo pip install /tmp/tensorflow_pkg/tensorflow-1.2.1-cp27-cp27mu-linux_x86_64.whl

3.7 测试

$ python
import tensorflow as tf
sess = tf.Session()

参考

https://alliseesolutions.wordpress.com/2016/09/08/install-gpu-tensorflow-from-sources-w-ubuntu-16-04-and-cuda-8-0/

https://stackoverflow.com/questions/41293077/how-to-compile-tensorflow-with-sse4-2-and-avx-instructions

https://www.tensorflow.org/install/install_linux

Ubuntu16.04下安装CUDA8.0和tensorflow的更多相关文章

  1. ubuntu16.04下安装cuda8.0

    一.首先安装NVIDIA显卡驱动 通过NVIDIA-Linux-x86_64-367.44.run文件安装. 1. 添加 PPA. sudo add-apt-repository ppa:graphi ...

  2. 配有Tesla K40c的服务器新装Ubuntu16.04并安装CUDA8.0、Anaconda3、Matlab2016a、OPENCV3.1、CuDNN5.1、MXNet

    注:本文原创,作者:Noah Zhang  (http://www.cnblogs.com/noahzn/) 决定加入深度学习的大军,感谢导师给配了台新设备!第一次接触服务器并配置开发环境,整个过程中 ...

  3. Ubuntu14.04下安装Cuda8.0

    https://blog.csdn.net/sinat_19628145/article/details/60475696 https://developer.nvidia.com/cuda-down ...

  4. Ubuntu 14.04下安装CUDA8.0

    配置环境如下: 系统:Ubuntu14.04 64bit 显卡:Nvidia K620M 显卡驱动:Nvidia-Linux-x86_64-375.66.run CUDA8.0 +  cudnn8.0 ...

  5. 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0

    目录 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0 Reference 硬件说明: 软件准备: 1. 安装Ubuntu ...

  6. Ubuntu16.04下安装多版本cuda和cudnn

    Ubuntu16.04下安装多版本cuda和cudnn 原文 https://blog.csdn.net/tunhuzhuang1836/article/details/79545625 前言 因为之 ...

  7. Ubuntu16.04下安装数据库oracle客户端

    在Ubuntu16.04下安装oracle数据库客户端,使Django项目连接到远程Oracle数据库. 1.下载oracle客户端安装包: 进入官网http://www.oracle.com/tec ...

  8. ubuntu16.04下安装artoolkit5

    目前对AR技术的常见理解就是CV(Computer Vision)+CG(Computer Graphic).CV的方法很多,简单些比如FREAK+ICP(ARToolKit中的NFT),复杂些就是S ...

  9. Ubuntu16.04下安装redis

    Ubuntu16.04下安装redis 保证网络畅通,选定好下载工作路径,执行以下命令下载redis-3.2.6: sudo wget http://download.redis.io/release ...

随机推荐

  1. [code]代码格式1

    格式 /********************************************************************************* *Copyright(C), ...

  2. Face Alignment by Coarse-to-Fine Shape Searching--解析

    人脸关键点定位.Face Alignment by Coarse-to-Fine Shape Searching 算法源码详解(上) http://blog.csdn.net/shenxiaolu19 ...

  3. docker 运行redis

    自从接触docker之后,很多软件都想着用docker运行,毕竟手动安装的话老是要配一些环境变量啊,找配置文件修改配置什么的,docker却有更简便的办法. 正题: 建一个docker应用容器可以通过 ...

  4. 1px的border

    css中是这样写的: div{ border-bottom: 1px solid #dfe5e4; } 但在手机上,像素比不为 1 ,由于 webview 的灰度渲染, border 一般会显示为 2 ...

  5. 总结这两天连续干掉的bug In 创新实训 智能自然语言交流系

    临近项目合并,在pre合并中出现相当多的hug,遂记之 ps:这只是总结一下提纲,具体的方法在前文的博文中都详细记录.总结了. 平台的移植兼容性,虽然是跨平台的java,但是依旧有很多的意外: 1.从 ...

  6. mysql数据库性能测试报告

    网上有写的好的模板, 直接复链接了: 1. http://blog.csdn.net/mituan1234567/article/details/45247989 2. https://msdn.mi ...

  7. ecmall数据库表详解 二次开发必备

    文章分类表ecm_acategory 字段 类型 Null 默认 注释 cate_id int(10) 否   自增ID号,分类ID号 cate_name varchar(100) 否   分类的名称 ...

  8. 【Android】解决Android横竖屏切换数据丢失问题的方法

    解决方案1:在Androidmanifest.xml的activity标签中加入android:screenOrientation="portrait",可以屏蔽横屏 <ac ...

  9. Mac eclipse 编译、调试c++ 程序

    可以先安装个CDT插件: eclipse菜单 -> Help -> Install New Software... -> Work with (Add..) Name:CDT Loc ...

  10. Git -- 相关命令

    git init : 将当前目录变成Git可以管理的仓库 git add :告诉Git,把文件添加到仓库 git commit -m "" :把文件提交到仓库 git status ...