bzoj1042硬币购物
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042
dp预处理+容斥原理。
先预处理求出无限制的各面值的组成方案数 f (完全背包)。
求s [ i ]有限制的,就是s [ i ]无限制方案数 - 单种硬币一定超过限制的方案数 + 两种的 - 三种的 + 四种的。
第 k 中硬币一定超过限制的方案数就是f [ s [ i ] - c [ k ] * ( d [ k ] + 1 ) ],即确定用了 d + 1 个该硬币,刨去它们后的无限制方案数。
当 c [ k ] * ( d [ k ] + 1 ) > s [ i ] 时不用操作,即没有“超过该限制”的可能。但== s [ i ] 时还是要操作的,f [ 0 ] = 1。
以为要用高精度,结果WA。看看题解发现不用高精度,于是……
如果高精度的话,防止某次减到了负数,可以先把加的弄了(反正只有四种硬币)。
非高精AC代码:
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
ll c[],d[][],tot,mx,s[],f[],ans;
void pre()
{
f[]=;///
for(int i=;i<=;i++)
for(ll j=c[i];j<=mx;j++)
f[j]+=f[j-c[i]];
}
void dfs(ll now,ll k,ll cnt,ll z)//第now次询问,第k号,选了cnt个,f目前脚标
{
if(z<)return;//不是z<=0!!
if(k==)
{
if(cnt&)ans-=f[z];
else if(cnt)ans+=f[z];
return;
}
dfs(now,k+,cnt,z);
dfs(now,k+,cnt+,z-c[k]*d[now][k]-c[k]);
}
int main()
{
for(int i=;i<=;i++)scanf("%lld",&c[i]);
scanf("%lld",&tot);
for(int i=;i<=tot;i++)
scanf("%lld%lld%lld%lld%lld",&d[i][],&d[i][],&d[i][],&d[i][],&s[i]),mx=max(mx,s[i]);
pre();
for(int i=;i<=tot;i++)
{
ans=f[s[i]];
dfs(i,,,s[i]);
printf("%lld\n",ans);
}
return ;
}
高精WA代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int INF=;
ll c[],d[][],tot,s[],mx,tp;
int f[INF][],ans[];
void plu(ll k,int a[],int b[])
{
int tmp[]={},lm=max(a[],b[]);
for(int i=;i<=lm;i++)
{
tmp[i]+=a[i]+b[i];
if(tmp[i]>)tmp[i]-=,tmp[i+]++;
}
tmp[]=lm;
if(tmp[tmp[]+])tmp[]++;
memcpy(f[k],tmp,sizeof tmp);
}
void pre()
{
f[][]=;f[][]=;
for(int i=;i<=;i++)
for(ll j=c[i];j<=mx;j++)
plu(j,f[j],f[j-c[i]]);
}
void print()
{
// printf("(%d)",ans[0]);
for(int i=ans[];i;i--)
printf("%d",ans[i]);
printf("\n");
}
void plu2(ll k)
{
int lm=max(ans[],f[k][]);
for(int i=;i<=lm;i++)
{
ans[i]+=f[k][i];
if(ans[i]>)ans[i]-=,ans[i+]++;
}
if(ans[ans[]+])ans[]++;
// printf("++ k=%d ",k);print();
}
void jian(ll k)
{
// int lm=max(ans[0],f[k][0]);
for(int i=;i<=f[k][];i++)
{
ans[i]-=f[k][i];
if(ans[i]<)ans[i]+=,ans[i+]--;
}
while(!ans[ans[]]&&ans[]>)ans[]--;
// printf("-- k=%d ",k);print();
}
//void debugprint()
//{
// for(int i=1;i<=s[1];i++)
// {
// printf("i=%d ",i);
// for(int j=f[i][0];j;j--)
// printf("%d",f[i][j]);
// printf("\n");
// }
//}
int main()
{
for(int i=;i<=;i++)scanf("%lld",&c[i]);
scanf("%lld",&tot);
for(int i=;i<=tot;i++)
{
scanf("%lld%lld%lld%lld%lld",&d[i][],&d[i][],&d[i][],&d[i][],&s[i]);
mx=max(mx,s[i]);
}
pre();
for(int i=;i<=tot;i++)
{
memcpy(ans,f[s[i]],sizeof f[s[i]]);//
// debugprint();
for(int u=;u<;u++)
for(int v=u+;v<=;v++)
{
tp=c[u]*d[i][u]+c[v]*d[i][v]+c[u]+c[v];
if(tp<=s[i])plu2(s[i]-tp); ///<=!!!,因为我的f[0]有值为1 ;正是要用这个1!
}
tp=c[]*d[i][]+c[]*d[i][]+c[]*d[i][]+c[]*d[i][]+c[]+c[]+c[]+c[];
if(tp<=s[i])plu2(s[i]-tp);
for(int u=;u<=;u++)
{
tp=c[u]*d[i][u]+c[u];
if(tp<=s[i])jian(s[i]-tp);
}
for(int u=;u<=;u++)
for(int v=u+;v<=;v++)
for(int j=v+;j<=;j++)
{
tp=c[u]*d[i][u]+c[v]*d[i][v]+c[j]*d[i][j]+c[u]+c[v]+c[j];
if(tp<=s[i])jian(s[i]-tp);
}
print();
}
return ;
}
bzoj1042硬币购物的更多相关文章
- bzoj1042硬币购物——递推+容斥
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042 递推,再用容斥原理减掉多余的,加上多减的……(dfs)即可. 代码如下: #includ ...
- [bzoj1042]硬币购物
先预处理出没有上限的方案数,然后容斥,然后将所有东西的范围都变为[0,+oo),即可用预处理出的dp数组计算 1 #include<bits/stdc++.h> 2 using names ...
- BZOJ1042 [HAOI2008]硬币购物 完全背包 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1042 题目概括 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了t ...
- 【BZOJ1042】硬币购物(动态规划,容斥原理)
[BZOJ1042]硬币购物(动态规划,容斥原理) 题面 BZOJ Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬 ...
- [bzoj1042][HAOI2008][硬币购物] (容斥原理+递推)
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...
- 【BZOJ-1042】硬币购物 容斥原理 + 完全背包
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1811 Solved: 1057[Submit][Stat ...
- bzoj1042: [HAOI2008]硬币购物
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- 【BZOJ1042】【DP + 容斥】[HAOI2008]硬币购物
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...
- BZOJ1042:[HAOI2008]硬币购物(DP,容斥)
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...
随机推荐
- EBS OAF开发中的错误/异常处理(ErrorHandling) (转)
原文地址 EBS OAF开发中的错误/异常处理(ErrorHandling) EBS OAF开发中的错误/异常处理(ErrorHandling) (版权声明,本人原创或者翻译的文章如需转载,如转载用于 ...
- SQL TUNING——从近半小时到几十毫秒的一次优化
昨天,一个用户的现场人员打电话紧急求助,说他们的一个系统卡了,半天不出结果,严重的影响了他们的使用,我简单的问了几句:什么时候的事儿?答:就今天下午的事儿.问:数据库软硬件最近动过没?答:没动过.问: ...
- [LeetCode] 35. Search Insert Position ☆(丢失的数字)
转载:https://leetcode.windliang.cc/leetCode-35-Search-Insert-Position.html 思路 Given a sorted array ...
- python中的对象
一.python对象 python使用对象模型来存储数据.构造任何类型的值都是一个对象. 所有python对象都拥有三个特性:身份.类型.值 身份:每个对象都有一个唯一的身份标识自己,任何对象的身份可 ...
- PHP:第一章——按位运算和求余运算(判断奇偶数)
<?php //按位运算:与1按位运算等于0,输出偶数.如果等于1,输出奇数 //输出偶数: for($i=0;$i<10;$i++){ if(($i & 1)==0){ echo ...
- cas Cas20ProxyReceivingTicketValidationFilter
Cas20ProxyReceivingTicketValidationFilter 继承AbstractTicketValidationFilter,这里有几个模板方法.例如getTicketVal ...
- Oracle 备份与恢复 15 个典型问题
1.问:Oracle11g数据库数据量有50T,每天增量50g左右,该如何制定备份方案,如何验证备份的有效性? 答:50T的数据也不大,运营商的地市级市数据基本都在100T以上了,只要备份环境允许的话 ...
- 破解电视盒 运营商送的,各种型号。通用 TTL 破解电视盒,更新华为悦盒
ZTE ZXV10B860AV1.1 准备工作,准备一个优盘,里面放上当贝桌面的apk 准备ttl线,淘宝10元以内包邮. 把优盘插打盒子上,打开盒子,用ttl连接上,只连gnd tx rx ,V ...
- CCF CSP 201703
CCF CSP 2017·03 做了一段时间的CCF CSP试题,个人感觉是这样分布的 A.B题基本纯暴力可满分 B题留心数据范围 C题是个大模拟,留心即可 D题更倾向于图论?(个人做到的D题基本都是 ...
- C++内存管理-重载内存管理函数
记录学习的点点滴滴,参考侯捷<<C++内存管理>> 我们先重载一下C++的几个内存管理函数 operator new, operator new[], operator del ...