MATLAB实现多元线性回归预测
一、简单的多元线性回归:
data.txt
,230.1,37.8,69.2,22.1
,44.5,39.3,45.1,10.4
,17.2,45.9,69.3,9.3
,151.5,41.3,58.5,18.5
,180.8,10.8,58.4,12.9
,8.7,48.9,,7.2
,57.5,32.8,23.5,11.8
,120.2,19.6,11.6,13.2
,8.6,2.1,,4.8
,199.8,2.6,21.2,10.6
,66.1,5.8,24.2,8.6
,214.7,,,17.4
,23.8,35.1,65.9,9.2
,97.5,7.6,7.2,9.7
,204.1,32.9,,
,195.4,47.7,52.9,22.4
,67.8,36.6,,12.5
,281.4,39.6,55.8,24.4
,69.2,20.5,18.3,11.3
,147.3,23.9,19.1,14.6
,218.4,27.7,53.4,
,237.4,5.1,23.5,12.5
,13.2,15.9,49.6,5.6
,228.3,16.9,26.2,15.5
,62.3,12.6,18.3,9.7
,262.9,3.5,19.5,
,142.9,29.3,12.6,
,240.1,16.7,22.9,15.9
,248.8,27.1,22.9,18.9
,70.6,,40.8,10.5
,292.9,28.3,43.2,21.4
,112.9,17.4,38.6,11.9
,97.2,1.5,,9.6
,265.6,,0.3,17.4
,95.7,1.4,7.4,9.5
,290.7,4.1,8.5,12.8
,266.9,43.8,,25.4
,74.7,49.4,45.7,14.7
,43.1,26.7,35.1,10.1
,,37.7,,21.5
,202.5,22.3,31.6,16.6
,,33.4,38.7,17.1
,293.6,27.7,1.8,20.7
,206.9,8.4,26.4,12.9
,25.1,25.7,43.3,8.5
,175.1,22.5,31.5,14.9
,89.7,9.9,35.7,10.6
,239.9,41.5,18.5,23.2
,227.2,15.8,49.9,14.8
,66.9,11.7,36.8,9.7
,199.8,3.1,34.6,11.4
,100.4,9.6,3.6,10.7
,216.4,41.7,39.6,22.6
,182.6,46.2,58.7,21.2
,262.7,28.8,15.9,20.2
,198.9,49.4,,23.7
,7.3,28.1,41.4,5.5
,136.2,19.2,16.6,13.2
,210.8,49.6,37.7,23.8
,210.7,29.5,9.3,18.4
,53.5,,21.4,8.1
,261.3,42.7,54.7,24.2
,239.3,15.5,27.3,15.7
,102.7,29.6,8.4,
,131.1,42.8,28.9,
,,9.3,0.9,9.3
,31.5,24.6,2.2,9.5
,139.3,14.5,10.2,13.4
,237.4,27.5,,18.9
,216.8,43.9,27.2,22.3
,199.1,30.6,38.7,18.3
,109.8,14.3,31.7,12.4
,26.8,,19.3,8.8
,129.4,5.7,31.3,
,213.4,24.6,13.1,
,16.9,43.7,89.4,8.7
,27.5,1.6,20.7,6.9
,120.5,28.5,14.2,14.2
,5.4,29.9,9.4,5.3
,,7.7,23.1,
,76.4,26.7,22.3,11.8
,239.8,4.1,36.9,12.3
,75.3,20.3,32.5,11.3
,68.4,44.5,35.6,13.6
,213.5,,33.8,21.7
,193.2,18.4,65.7,15.2
,76.3,27.5,,
,110.7,40.6,63.2,
,88.3,25.5,73.4,12.9
,109.8,47.8,51.4,16.7
,134.3,4.9,9.3,11.2
,28.6,1.5,,7.3
,217.7,33.5,,19.4
,250.9,36.5,72.3,22.2
,107.4,,10.9,11.5
,163.3,31.6,52.9,16.9
,197.6,3.5,5.9,11.7
,184.9,,,15.5
,289.7,42.3,51.2,25.4
,135.2,41.7,45.9,17.2
,222.4,4.3,49.8,11.7
,296.4,36.3,100.9,23.8
,280.2,10.1,21.4,14.8
,187.9,17.2,17.9,14.7
,238.2,34.3,5.3,20.7
,137.9,46.4,,19.2
,,,29.7,7.2
,90.4,0.3,23.2,8.7
,13.1,0.4,25.6,5.3
,255.4,26.9,5.5,19.8
,225.8,8.2,56.5,13.4
,241.7,,23.2,21.8
,175.7,15.4,2.4,14.1
,209.6,20.6,10.7,15.9
,78.2,46.8,34.5,14.6
,75.1,,52.7,12.6
,139.2,14.3,25.6,12.2
,76.4,0.8,14.8,9.4
,125.7,36.9,79.2,15.9
,19.4,,22.3,6.6
,141.3,26.8,46.2,15.5
,18.8,21.7,50.4,
,,2.4,15.6,11.6
,123.1,34.6,12.4,15.2
,229.5,32.3,74.2,19.7
,87.2,11.8,25.9,10.6
,7.8,38.9,50.6,6.6
,80.2,,9.2,8.8
,220.3,,3.2,24.7
,59.6,,43.1,9.7
,0.7,39.6,8.7,1.6
,265.2,2.9,,12.7
,8.4,27.2,2.1,5.7
,219.8,33.5,45.1,19.6
,36.9,38.6,65.6,10.8
,48.3,,8.5,11.6
,25.6,,9.3,9.5
,273.7,28.9,59.7,20.8
,,25.9,20.5,9.6
,184.9,43.9,1.7,20.7
,73.4,,12.9,10.9
,193.7,35.4,75.6,19.2
,220.5,33.2,37.9,20.1
,104.6,5.7,34.4,10.4
,96.2,14.8,38.9,11.4
,140.3,1.9,,10.3
,240.1,7.3,8.7,13.2
,243.2,,44.3,25.4
,,40.3,11.9,10.9
,44.7,25.8,20.6,10.1
,280.7,13.9,,16.1
,,8.4,48.7,11.6
,197.6,23.3,14.2,16.6
,171.3,39.7,37.7,
,187.8,21.1,9.5,15.6
,4.1,11.6,5.7,3.2
,93.9,43.5,50.5,15.3
,149.8,1.3,24.3,10.1
,11.7,36.9,45.2,7.3
,131.7,18.4,34.6,12.9
,172.5,18.1,30.7,14.4
,85.7,35.8,49.3,13.3
,188.4,18.1,25.6,14.9
,163.5,36.8,7.4,
,117.2,14.7,5.4,11.9
,234.5,3.4,84.8,11.9
,17.9,37.6,21.6,
,206.8,5.2,19.4,12.2
,215.4,23.6,57.6,17.1
,284.3,10.6,6.4,
,,11.6,18.4,8.4
,164.5,20.9,47.4,14.5
,19.6,20.1,,7.6
,168.4,7.1,12.8,11.7
,222.4,3.4,13.1,11.5
,276.9,48.9,41.8,
,248.4,30.2,20.3,20.2
,170.2,7.8,35.2,11.7
,276.7,2.3,23.7,11.8
,165.6,,17.6,12.6
,156.6,2.6,8.3,10.5
,218.5,5.4,27.4,12.2
,56.2,5.7,29.7,8.7
,287.6,,71.8,26.2
,253.8,21.3,,17.6
,,45.1,19.6,22.6
,139.5,2.1,26.6,10.3
,191.1,28.7,18.2,17.3
,,13.9,3.7,15.9
,18.7,12.1,23.4,6.7
,39.5,41.1,5.8,10.8
,75.5,10.8,,9.9
,17.2,4.1,31.6,5.9
,166.8,,3.6,19.6
,149.7,35.6,,17.3
,38.2,3.7,13.8,7.6
,94.2,4.9,8.1,9.7
,,9.3,6.4,12.8
,283.6,,66.2,25.5
,232.1,8.6,8.7,13.4
回归代码:
% A=importdata('data.txt',' ',);%????????A.data a = load('data.txt');
x1=a(:,[]) ;
x2=a(:,[]) ;
x3=a(:,[]) ;
y=a(:,[]); X=[ones(length(y),), x1,x2,x3]; [b,bint,r,rint,stats]=regress(y,X);
b;bint;stats;
rcoplot(r,rint) tx=[230.1,37.8,69.2];
b2=[b(),b(),b()];
ty=b()+b2*tx';
ty;
简单的得到一个变换的公式
y=b(1)+b(2)*x1+b(3)*x2+b(3)*x3;
二、ridge regression岭回归
其实就是在回归前对数据进行预处理,去掉一些偏差数据的影响。
1、一般线性回归遇到的问题
在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在:
- 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量
- 时,最小二乘回归会有较小的方差
- 时,容易产生过拟合
- 时,最小二乘回归得不到有意义的结果
- 模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征选择。
以上的这些问题,主要就是表现在模型的方差和偏差问题上,这样的关系可以通过下图说明:
(摘自:机器学习实战)
方差指的是模型之间的差异,而偏差指的是模型预测值和数据之间的差异。我们需要找到方差和偏差的折中。
2、岭回归的概念
在进行特征选择时,一般有三种方式:
- 子集选择
- 收缩方式(Shrinkage method),又称为正则化(Regularization)。主要包括岭回归个lasso回归。
- 维数缩减
岭回归(Ridge Regression)是在平方误差的基础上增加正则项
,
通过确定的值可以使得在方差和偏差之间达到平衡:随着的增大,模型方差减小而偏差增大。
对求导,结果为
令其为0,可求得的值:
3、实验的过程
我们去探讨一下取不同的对整个模型的影响。
MATLAB代码
function [ w ] = ridgeRegression( x, y, lam )
xTx = x'*x;
[m,n] = size(xTx);
temp = xTx + eye(m,n)*lam;
if det(temp) ==
disp('This matrix is singular, cannot do inverse');
end
w = temp^(-)*x'*y;
end
%% ???(Ridge Regression)
clc;
%????
data = load('data.txt');
[m,n] = size(data); dataX = data(:,:);%??
dataY = data(:,);%?? %???
yMeans = mean(dataY);
for i = :m
yMat(i,:) = dataY(i,:)-yMeans;
end xMeans = mean(dataX);
xVars = var(dataX);
for i = :m
xMat(i,:) = (dataX(i,:) - xMeans)./xVars;
end % ???
testNum = ;
weights = zeros(testNum, n-);
for i = :testNum
w = ridgeRegression(xMat, yMat, exp(i-));
weights(i,:) = w';
end % ??????lam
hold on
axis([- -1.0 2.5]);
xlabel log(lam);
ylabel weights;
for i = :n-
x = -:;
y(,:) = weights(:,i)';
plot(x,y);
end
plot出来的图像显示,k=5的时候,出现了拟合,因此取k=5时的w值,
% resualt output ,i=5
w = ridgeRegression(xMat, yMat, exp(5-10));
三、另外一个岭回归比较好的例子
function [b,bint,r,rint,stats] = ridge1(Y,X,k)
[n,p] = size(X);
mx = mean (X);
my = mean (Y);
stdx = std(X);
stdy=std(Y);
idx = find(abs(stdx) < sqrt(eps));
MX = mx(ones(n,),:);
STDX = stdx(ones(n,),:);
Z = (X - MX) ./ STDX;Y=(Y-my)./stdy;
pseudo = sqrt(k*(n-)) * eye(p);
Zplus = [Z;pseudo];
Yplus = [Y;zeros(p,)];
[b,bint,r,rint,stats] = regress(Yplus,Zplus);
end
x=[71.35 22.90 3.76 1158.18 12.20 55.87;
67.92 17.11 1494.38 19.82 56.60;
79.38 24.91 33.60 691.56 16.17 92.78;
87.97 10.18 0.73 923.04 12.15 24.66;
59.03 7.71 3.58 696.92 13.50 61.81;
55.23 22.94 1.34 1083.84 10.76 49.79;
58.30 12.78 5.25 1180.36 9.58 57.02;
67.43 9.59 2.92 797.72 16.82 38.29;
76.63 15.12 2.55 919.49 17.79 32.07];
y=[28.46;27.76;26.02;33.29;40.84;44.50;28.09;46.24; 45.21];
x'*x;
count=;
kvec=0.1:0.1:;
for k=0.1:0.1:
count=count+;
[b,bint,r,rint,stats]=ridge1(y,x,k);
bb(:,count)=b;
stats1(count,:)=stats;
end
bb',stats1
plot(kvec',bb),xlabel('k'),ylabel('b','FontName','Symbo l')
从运行结果及图1可见,k≥0.7时每个变量相应
的岭回归系数变化较为稳定,因而可选k=0.7,建立 岭回归方程
y=-0.219 5x1-0.120 2x2-0.237 8x3- 0.244 6x4+0.203 6x5-0.249 4x6
MATLAB实现多元线性回归预测的更多相关文章
- Python 实现多元线性回归预测
一.二元输入特征线性回归 测试数据为:ex1data2.txt ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ...
- R语言 多元线性回归分析
#线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公 ...
- R与数据分析旧笔记(六)多元线性分析 下
逐步回归 向前引入法:从一元回归开始,逐步加快变量,使指标值达到最优为止 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止 逐步筛选法:综合上述两种方法 多元线性回归的核心问题 ...
- Tensorflow 线性回归预测房价实例
在本节中将通过一个预测房屋价格的实例来讲解利用线性回归预测房屋价格,以及在tensorflow中如何实现 Tensorflow 线性回归预测房价实例 1.1. 准备工作 1.2. 归一化数据 1.3. ...
- 机器学习01:使用scikit-learn的线性回归预测Google股票
这是机器学习系列的第一篇文章. 本文将使用Python及scikit-learn的线性回归预测Google的股票走势.请千万别期望这个示例能够让你成为股票高手.下面按逐步介绍如何进行实践. 准备数据 ...
- C# chart.DataManipulator.FinancialFormula()公式的使用 线性回归预测方法
最近翻阅资料,找到 chart.DataManipulator.FinancialFormula()公式的使用,打开另一扇未曾了解的窗,供大家分享一下. 一 DataManipulator类 运行时, ...
- fslove - Matlab求解多元多次方程组
fslove - Matlab求解多元多次方程组 简介: 之前看到网上的一些资料良莠不齐,各种转载之类的,根本无法解决实际问题,所以我打算把自己的学到的总结一下,以实例出发讲解fsolve. 示例如下 ...
- MATLAB——神经网络构造线性层函数linearlayer
% example5_7.m x=-:; y=*x-; randn(); % 设置种子,便于重复执行 y=y+randn(,length(y))*1.5; % 加入噪声的直线 plot(x,y,'o' ...
- matlab 实现感知机线性二分类算法(Perceptron)
感知机是简单的线性分类模型 ,是二分类模型.其间用到随机梯度下降方法进行权值更新.参考他人代码,用matlab实现总结下. 权值求解过程通过Perceptron.m函数完成 function W = ...
随机推荐
- Ubuntu 13.04 SSH其他机器连接慢的解决办法
原来Windows上用Xshell,用这比较爽,命令open http,自动打开自己定义的http服务器SSH 远程连接,点一下文件传输,如果装了xsftp,自动启动xsftp,没有就来个提示,打开一 ...
- 容错处理库Polly使用文档
Design For Failure1. 一个依赖服务的故障不会严重破坏用户的体验.2. 系统能自动或半自动处理故障,具备自我恢复能力. 以下是一些经验的服务容错模式 超时与重试(Timeout an ...
- Maven:浅析依赖(dependency)关系中 scope 的含义(转)
在 Pom4 中,dependency 元素中引入了 scope 元素,这是一个很重要的属性.在Maven 项目中 Jar 包冲突.类型转换异常的很大原因是由于 scope 元素使用不当造成的. sc ...
- CentOS 7 设置iptables防火墙开放proftpd端口
由于ftp的被动模式是这样的,客户端跟服务器端的21号端口交互信令,服务器端开启21号端口能够使客户端登录以及查看目录.但是ftp被动模式用于传输数据的端口却不是21,而是大于1024的随机或配置文件 ...
- 高精度运算库gmp
网址:www.gmplib.org 我下载的是 6.1.2版本:https://gmplib.org/download/gmp/gmp-6.1.2.tar.bz2 执行操作如下: 1. tar -jv ...
- 有关google的appengine部署服务器的简单教程
以下的内容都是看这个网址:https://developers.google.com/appengine/. 1.既然是google的东西.当然就要注册一个google的账号吧. (记得注册后要顺便把 ...
- js正则表达式实现手机号码,密码正则验证
手机号码,密码正则验证. 分享下javascript中正则表达式进行的格式验证,常用的有手机号码,密码等. /** * 手机号码 * 移动:134[0-8],135,136,137,138,139,1 ...
- 绕过chrome的弹窗拦截机制
在chrome的安全机制里面,非用户触发的window.open方法,是会被拦截的.举个例子: var btn = $('#btn'); btn.click(function () { //不会被拦截 ...
- 机器学习算法实现解析——word2vec源代码解析
在阅读本文之前,建议首先阅读"简单易学的机器学习算法--word2vec的算法原理"(眼下还没公布).掌握例如以下的几个概念: 什么是统计语言模型 神经概率语言模型的网络结构 CB ...
- android studio - Indexing paused due to batch updated
傻逼的 Android Studio 又开抽疯了.... 日 打开项目就出现 Indexing paused due to batch updated ,并且半天没反应........ 解决办 ...