Survival Coxph log-rank
I'm using the survival package in R to analyze clinical data. I am analyzing two different groups of patients, when I calculate survdiff in order to compare the curves, I got p= 0.135, but when I adjust the model using coxph and different covariates, let say clinical cancer stages, , I got an overall logrank score of 0.0005793 for 5 covariates. My question is, could I use this late logrank p-value to say that adjusting the model with more covariates the difference between the curves is signifficative?
here is the data
survdiff(formula = my.surv ~ final_table$G)
n=56, 14 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
final_table$G=1 4 2 1.43 0.2294 0.247
final_table$G=2 52 24 24.57 0.0133 0.247
Chisq= 0.2 on 1 degrees of freedom, **p= 0.619**
And this is the coxph results
coxph(formula = Surv(final_table$Time_surv, final_table$Survival) ~ final_table$G + final_table$ST)
n= 56, number of events= 26
(14 observations deleted due to missingness)
coef exp(coef) se(coef) z Pr(>|z|)
final_table$G2 2.094e-01 1.233e+00 7.532e-01 0.278 0.781
final_table$STII 1.883e+01 1.501e+08 5.739e+03 0.003 0.997
final_table$STIII 1.998e+01 4.773e+08 5.739e+03 0.003 0.997
final_table$STIV 2.089e+01 1.186e+09 5.739e+03 0.004 0.997
exp(coef) exp(-coef) lower .95 upper .95
final_table$G2 1.233e+00 8.111e-01 0.2817 5.396
final_table$STII 1.501e+08 6.662e-09 0.0000 Inf
final_table$STIII 4.773e+08 2.095e-09 0.0000 Inf
final_table$STIV 1.186e+09 8.430e-10 0.0000 Inf
Concordance= 0.74 (se = 0.057 )
Rsquare= 0.37 (max possible= 0.957 )
Likelihood ratio test= 25.86 on 4 df, p=3.381e-05
Wald test = 4.02 on 4 df, p=0.4033
Score (logrank) test = 19.67 on 4 df, **p=0.0005793**
Thanks
Thanks to comments I did this analysis, survdiff with roup and stage
survdiff(formula = Surv(final_table$Time_surv, final_table$Survival) ~
final_table$G + final_table$ST)
n=56, 14 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
final_table$G=1, final_table$ST=III 3 2 1.149 0.630 0.668
final_table$G=1, final_table$ST=IV 1 0 0.279 0.279 0.285
final_table$G=2, final_table$ST=I 15 0 8.715 8.715 13.547
final_table$G=2, final_table$ST=II 2 1 1.816 0.367 0.402
final_table$G=2, final_table$ST=III 30 19 13.067 2.693 5.540
final_table$G=2, final_table$ST=IV 5 4 0.973 9.413 9.935
Chisq= 23.2 on 5 degrees of freedom, p= 0.000313
So the final value is totally significant, but now I got 6 curves, more or less this is what I want, how the group and the stage is affecting the survival. What do you think?
migrated from stackoverflow.com Apr 19 '12 at 18:01
This question came from our site for professional and enthusiast programmers.
Without actual output it is difficult to tell, but generally an "overall logrank score" will test the null hypothesis that all of the coefficients are 0. Therefore a significant result could be due to one or more of your covariates being related to survival while your 2 groups are still identical (or they could be different).
It is better to fit the model with your group variable (and the covariates) and fit another model without your group variable (but still with the same covariates) and compare the 2 fits.
- 1I've never heard of an "overall logrank score" coming from a Cox model (but when you have a single categorical covariate in your Cox model, than the score test from the Cox model and the logrank test are equivalent). I don't use R so I'm just speculating here, but couldn't it be just a "LR test" that the OP incorrectly interpreted as "LogRank" instead of "Likelihood Ratio"? – boscovich Apr 19 '12 at 18:46
- Anyway, apart from the name of the test, I agree with what you say. – boscovich Apr 19 '12 at 18:55
- 1@andrea, you are probably correct, I was focusing on the "Overall" part rather than thinking logrank vs liklihood ratio. Either way I would not interpret it the way the original poster wants to without a lot more information. – Greg Snow Apr 19 '12 at 18:55
- Sorry, i forgot to add the data probably is mor clear now, I want to know if adjusting using other covariates I can say that my logrank score test coming from coxph, p=0.0005793 could replace the former survdiff logrank p= 0.619. Thanks and sorry is you find the question too simple, I'm totally newbie in survival analysis – ToniG Apr 20 '12 at 9:06
- It is like I said, that is an overall score that says that at least one of the predictors is important (in this case it is the one that you are adjusting for). The test of G given ST (adjusting for ST) has the p-value 0.781. So you have no evidence that G predicts survival. – Greg Snow Apr 21 '12 at 17:27
Survival Coxph log-rank的更多相关文章
- DNA甲基化与癌症、泛癌早筛 | DNA methylation and pan-cancer
虽然我们现在完全没有甲基化的数据,但还是可以了解一下. 什么是DNA甲基化,与组蛋白修饰有什么联系? DNA Methylation and Its Basic Function 表观的定义就是DNA ...
- R语言与医学统计图形-【33】生存曲线、森林图、曼哈顿图
1.生存曲线 基础包survival+扩展包survminer. survival包内置肺癌数据集lung. library(survival) library(survminer) str(lung ...
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- OR,RR,HR 临床分析应用中的差别 对照组暴露比值b/d
1.相对危险度(relative risk,RR).指暴露于某因素发生某事件的风险,即A/(A+B),除以未暴露人群发生的该事件的风险,即C/(C+D),所得的比值,即RR=[A/(A+B)]/[C/ ...
- Luogu P1117 [NOI2016]优秀的拆分
题目链接 \(Click\) \(Here\) 这题质量不错,就是暴力分有点足\(hhhhhhhh\),整整有\(95\)分. (搞得我写完暴力都不想写正解直接理解思路之后就直接水过去了\(QwQ\) ...
- 统计学中RR OR AR HR的区别
一.相对危险度(RR)——队列研究中分析暴露因素与发病的关联程度 队列研究是选择暴露及未暴露于某一因素的两组人群,追踪其各自的发病结局,比较两组发病结局的差异,从而判定暴露因素与疾病有无关联及关联大小 ...
- 示例 - 25行代码等价实现 - 借助Nodejs在服务端使用jQuery采集17173游戏排行信息
今天在园子里看到一篇文章: 借助Nodejs在服务端使用jQuery采集17173游戏排行信息 感觉用SS来实现相同功能更加简洁, 于是写了一下, 发现25行代码就搞定了 (包括自动翻页), 于是跟大 ...
- go 学习笔记之有意思的变量和不安分的常量
首先希望学习 Go 语言的爱好者至少拥有其他语言的编程经验,如果是完全零基础的小白用户,本教程可能并不适合阅读或尝试阅读看看,系列笔记的目标是站在其他语言的角度学习新的语言,理解 Go 语言,进而写出 ...
- survival analysis 生存分析与R 语言示例 入门篇
原创博客,未经允许,不得转载. 生存分析,survival analysis,顾名思义是用来研究个体的存活概率与时间的关系.例如研究病人感染了病毒后,多长时间会死亡:工作的机器多长时间会发生崩溃等. ...
随机推荐
- 【linux基础】区块选择VisualBlock
前言 有时候使用linux需要选择某一块区域进行处理,比如对某些列的某些行,类似于Ultraedit的列模式,其实vim中就有相关的功能,此时可以使用vim的区块选择进行处理. 区块选择 1.在一般模 ...
- 取消word中所有超链接
我用的是M-O-W2007,最近做了一个文档,里面很多网上拷下来的图片,很多都有超链接,不想一个一个的取消,请高手帮忙教下有没有措施一次性都取消? 最佳答案: 三种方法,任意选用其中之一: 第一种方法 ...
- IIS7中Ajax.AjaxMethod无效的原因及解决方法
使用Ajax.AjaxMethod方法在asp.net的服务器下一切正常,用iis的时候,js中总是cs类找不到,具体的解决方法如下,遇到类似情况的朋友可以参考下 最近做用Ajax.AjaxMetho ...
- 了解 .NET 的默认 TaskScheduler 和线程池(ThreadPool)设置,避免让 Task.Run 的性能急剧降低
.NET Framework 4.5 开始引入 Task.Run,它可以很方便的帮助我们使用 async / await 语法,同时还使用线程池来帮助我们管理线程.以至于我们编写异步代码可以像编写同步 ...
- spfa【模板】
#include<iostream> #include<cstdio> #include<cstring> #include<queue> using ...
- hdu 5285 二分图黑白染色
题意:给出 n 个人,以及 m 对互不认识的关系,剩余的人都互相认识,要将所有人分成两组,组内不能有互不认识的人,要求每组至少有一人,并且第一组人数尽量多,问两组人数或不可能时单独输出 BC 48 场 ...
- LG4197 Peaks
题意 题目描述 在Bytemountains有N座山峰,每座山峰有他的高度hih_ihi.有些山峰之间有双向道路相连,共MMM条路径,每条路径有一个困难值,这个值越大表示越难走,现在有QQQ组询问, ...
- MySQL Transaction--RC事务隔离级别下加锁测试
==============================================================================非索引列更新 在读提交的事务隔离级别下,在非 ...
- drill 集成开源s3 存储minio
drill 支持s3数据的查询,同时新版的通过简单配置就可以实现minio 的集成 测试使用docker 运行drill 参考 https://www.cnblogs.com/rongfenglian ...
- nyoj 素数距离
素数距离问题 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描述 现在给出你一些数,要求你写出一个程序,输出这些整数相邻最近的素数,并输出其相距长度.如果左右有等距离长度 ...