【机器学习】K-Means算法
K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。
问题
K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法(Wikipedia链接)
算法概要
这个算法其实很简单,如下图所示:
从上图中,我们可以看到,A,B,C,D,E是五个在图中点。而灰色的点是我们的种子点,也就是我们用来找点群的点。有两个种子点,所以K=2。
然后,K-Means的算法如下:
- 随机在图中取K(这里K=2)个种子点。
- 然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群。(上图中,我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点)
- 接下来,我们要移动种子点到属于他的“点群”的中心。(见图上的第三步)
- 然后重复第2)和第3)步,直到,种子点没有移动(我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E)。
k值设定为多大?
k太小,分类结果易受噪声点影响;k太大,近邻中又可能包含太多的其它类别的点。(对距离加权,可以降低k值设定的影响)
k值通常是采用交叉检验来确定(以k=1为基准)
经验规则:k一般低于训练样本数的平方根
求点群中心的算法
一般来说,求点群中心点的算法你可以很简的使用各个点的X/Y坐标的平均值。不过,我这里想告诉大家另三个求中心点的的公式:
1)Minkowski Distance公式——λ可以随意取值,可以是负数,也可以是正数,或是无穷大。
2)Euclidean Distance公式——也就是第一个公式λ=2的情况
3)CityBlock Distance公式——也就是第一个公式λ=1的情况
这三个公式的求中心点有一些不一样的地方,我们看下图(对于第一个λ在0-1之间)。
(1)Minkowski Distance (2)Euclidean Distance (3) CityBlock Distance
上面这几个图的大意是他们是怎么个逼近中心的,第一个图以星形的方式,第二个图以同心圆的方式,第三个图以菱形的方式。
K-Means的演示
如果你以”K Means Demo“为关键字到Google里查你可以查到很多演示。这里推荐一个演示:http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
操作是,鼠标左键是初始化点,右键初始化“种子点”,然后勾选“Show History”可以看到一步一步的迭代。
注:这个演示的链接也有一个不错的K Means Tutorial。
K-Means++算法
K-Means主要有两个最重大的缺陷——都和初始值有关:
- K是事先给定的,这个K值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目K)
- K-Means算法需要用初始随机种子点来搞,这个随机种子点太重要,不同的随机种子点会有得到完全不同的结果。(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点)
我在这里重点说一下K-Means++算法步骤:
- 先从我们的数据库随机挑个随机点当“种子点”。
- 对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x))。
- 然后,再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到其<=0,此时的点就是下一个“种子点”。
- 重复第(2)和第(3)步直到所有的K个种子点都被选出来。
- 进行K-Means算法。
相关的代码你可以在这里找到“implement the K-means++ algorithm”(墙)另,Apache的通用数据学库也实现了这一算法
K-Means算法应用
看到这里,你会说,K-Means算法看来很简单,而且好像就是在玩坐标点,没什么真实用处。而且,这个算法缺陷很多,还不如人工呢。是的,前面的例子只是玩二维坐标点,的确没什么意思。但是你想一下下面的几个问题:
1)如果不是二维的,是多维的,如5维的,那么,就只能用计算机来计算了。
2)二维坐标点的X,Y 坐标,其实是一种向量,是一种数学抽象。现实世界中很多属性是可以抽象成向量的,比如,我们的年龄,我们的喜好,我们的商品,等等,能抽象成向量的目的就是可以让计算机知道某两个属性间的距离。如:我们认为,18岁的人离24岁的人的距离要比离12岁的距离要近,鞋子这个商品离衣服这个商品的距离要比电脑要近,等等。
只要能把现实世界的物体的属性抽象成向量,就可以用K-Means算法来归类了。
在《k均值聚类(K-means)》 这篇文章中举了一个很不错的应用例子,作者用亚洲15支足球队的2005年到1010年的战绩做了一个向量表,然后用K-Means把球队归类,得出了下面的结果,呵呵。
- 亚洲一流:日本,韩国,伊朗,沙特
- 亚洲二流:乌兹别克斯坦,巴林,朝鲜
- 亚洲三流:中国,伊拉克,卡塔尔,阿联酋,泰国,越南,阿曼,印尼
其实,这样的业务例子还有很多,比如,分析一个公司的客户分类,这样可以对不同的客户使用不同的商业策略,或是电子商务中分析商品相似度,归类商品,从而可以使用一些不同的销售策略,等等。
【机器学习】K-Means算法的更多相关文章
- 秒懂机器学习---k临近算法(KNN)
秒懂机器学习---k临近算法(KNN) 一.总结 一句话总结: 弄懂原理,然后要运行实例,然后多解决问题,然后想出优化,分析优缺点,才算真的懂 1.KNN(K-Nearest Neighbor)算法的 ...
- [机器学习] k近邻算法
算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...
- Python3入门机器学习 - k近邻算法
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...
- 机器学习-K最近邻算法
一.介绍 二.编程 练习一(K最近邻算法在单分类任务的应用): import numpy as np #导入科学计算包import matplotlib.pyplot as plt #导入画图工具fr ...
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- 机器学习(1)——K近邻算法
KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k ...
- 1.K近邻算法
(一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以 ...
- K-means算法
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢? ...
- 机器学习十大算法之KNN(K最近邻,k-NearestNeighbor)算法
机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最 ...
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
随机推荐
- C语言学习笔记 (004) - 数组名和数组首地址(转)
一个变量有地址,一个数组包含若干元素,每个数组元素都在内存中占用存储单元,它们都有相应的地址.指针变量既然可以指向变量,当然也可以指向数组和数组元素(把数据起始地址或某一元素的地址放到一个指针变量中) ...
- WIFEXITED WEXITSTATUS WIFSIGNALED(转)
wait的函数原型是: #include #include pid_t wait(int *status) 进 程一旦调用了wait,就立即阻塞自己,由wait自动分析是否当前进程的某个子进程已经退出 ...
- HDU 1258 Sum It Up (DFS)
Sum It Up Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...
- 【C语言】练习1-21
题目来源:<The C programming language>中的习题 练习1-21:编写程序entab,将空格串替换为最好数量的制表符和空格,但要保持单词之间的间隔不变. 思路: 对 ...
- 解决WIN32窗口不响应WM_LBUTTONDBLCLK消息
原文链接: http://www.cnblogs.com/xukaixiang/archive/2012/05/27/2520059.html 今天在做一个软件时,发现win32创建的窗体不能响应WM ...
- update关联其他表批量更新数据-跨数据库-跨服务器Update时关联表条件更新
1.有时在做项目时会有些期初数据更新,从老系统更新到新系统.如果用程序循环从老系统付给新系统. 2.有时在项目中需要同步程序,或者自动同步程序时会有大量数据更新就可能用到如下方法了. 3.为了做分析, ...
- 定期删除elasticsearch 的index 索引
#!/bin/bashfind /data/elasticsearch/data/pro-kz-log/nodes/0/indices/ -type d -mtime +7 | awk -F" ...
- haproxy 非常完整的配置
常用配置选项: OPTION 选项: option httpclose :HAProxy会针对客户端的第一条请求的返回添加cookie并返回给客户端,客户端发送后续请求时会发送 此cookie到HAP ...
- MySql(十五):MySql架构设计——可扩展性设计之 Cache 与 Search 的利用
前言 前面章节部分所分析的可扩展架构方案,基本上都是围绕在数据库自身来进行的,这样是否会使我们在寻求扩展性之路的思维受到“禁锢”,无法更为宽广的发散开来.这一章,我们就将跳出完全依靠数据库自身来改善扩 ...
- JDK1.5新特性,基础类库篇,集合框架(Collections)
集合框架在JDK1.5中增强特性如下: 一. 新语言特性的增强 泛型(Generics)- 增加了集合框架在编译时段的元素类型检查,节省了遍历元素时类型转换代码量. For-Loop循环(Enhanc ...