https://vjudge.net/problem/UVA-10285

题意:

在一个R*C的整数矩阵上找一条高度严格递减的最长路。起点任意,但每次只能沿着上下左右4个方向之一走一格,并且不能走出矩阵外。

思路:

DAG上的最长路问题。由于起点不固定,我们每个点都需要试一遍。

 #include<iostream>
#include<string>
#include<cstring>
#include<sstream>
#include<algorithm>
using namespace std; const int maxn = + ; int n, m;
char s[maxn];
int map[maxn][maxn];
int d[maxn][maxn]; int dx[] = { , , , - };
int dy[] = { , -, , }; int dp(int i,int j)
{
int& ans = d[i][j];
if (ans > ) return ans;
ans = ;
for (int k = ; k < ; k++)
{
int x = i + dx[k];
int y = j + dy[k];
if (x< || x>n || y< || y>m) continue;
if (map[x][y] < map[i][j])
ans = max(ans, dp(x,y) + );
}
return ans;
} int main()
{
//freopen("D:\\txt.txt", "r", stdin);
int T;
cin >> T;
while (T--)
{
memset(d, , sizeof(d));
cin >> s >> n >> m;
for (int i = ; i <= n;i++)
for (int j = ; j <= m; j++)
cin >> map[i][j]; int maxd = ;
for (int i = ; i <= n;i++)
for (int j = ; j <= m; j++)
{
maxd = max(maxd,dp(i, j));
}
cout << s << ": " << maxd << endl;
}
return ;
}

UVa 10285 最长的滑雪路径(DAG上的最长路)的更多相关文章

  1. uva103(最长递增序列,dag上的最长路)

    题目的意思是给定k个盒子,每个盒子的维度有n dimension 问最多有多少个盒子能够依次嵌套 但是这个嵌套的规则有点特殊,两个盒子,D = (d1,d2,...dn) ,E = (e1,e2... ...

  2. NYOJ_矩形嵌套(DAG上的最长路 + 经典dp)

    本题大意:给定多个矩形的长和宽,让你判断最多能有几个矩形可以嵌套在一起,嵌套的条件为长和宽分别都小于另一个矩形的长和宽. 本题思路:其实这道题和之前做过的一道模版题数字三角形很相似,大体思路都一致,这 ...

  3. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

  4. 题解 UVA10285 最长的滑雪路径 Longest Run on a Snowboard

    Solution 双倍经验 就是记搜嘛. 搞一个二维数组记录一下当前的最长滑雪路径,其他和普通 dfs 没什么两样. 向 \(4\) 个方向搜索,如果高度符合就 \(+1\) . 多测要注意数组初始化 ...

  5. Vulnerable Kerbals CodeForces - 772C【拓展欧几里得建图+DAG上求最长路】

    根据拓展欧几里得对于同余方程 $ax+by=c$ ,有解的条件是 $(a,b)|c$. 那么对于构造的序列的数,前一个数 $a$  和后一个数 $b$ ,应该满足 $a*x=b(mod m)$ 即 $ ...

  6. UVA - 10285 Longest Run on a Snowboard(最长的滑雪路径)(dp---记忆化搜索)

    题意:在一个R*C(R, C<=100)的整数矩阵上找一条高度严格递减的最长路.起点任意,但每次只能沿着上下左右4个方向之一走一格,并且不能走出矩阵外.矩阵中的数均为0~100. 分析:dp[x ...

  7. UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)

     Stacking Boxes  Background Some concepts in Mathematics and Computer Science are simple in one or t ...

  8. HDU 4109 Instrction Arrangement(DAG上的最长路)

    把点编号改成1-N,加一点0,从0点到之前任意入度为0的点之间连一条边权为0的边,求0点到所有点的最长路. SPFA模板留底用 #include <cstdio> #include < ...

  9. POJ 1949 Chores(DAG上的最长路 , DP)

    题意: 给定n项任务, 每项任务的完成用时t和完成每项任务前需要的k项任务, 求把所有任务完成的最短时间,有当前时间多项任务都可完成, 那么可以同时进行. 分析: 这题关键就是每项任务都会有先决条件, ...

随机推荐

  1. js-jquery-SweetAlert【二】配置方法

    一.配置 Argument Default value 含义   Description title null (required) 模态对话框的标题.它可以在参数对象的title参数中设置,也可以在 ...

  2. [vue]vue-book

    我们打算要做这几个模块 首页 列表 收藏 添加 home.vue --> list.vue -->app.vue --> main.js 安装环境 npm i vue-cli -g ...

  3. 容器集成平台 rancher部署

    下载rancher镜像 docker pull rancher/server:stable rancher/server:latest #开发版 rancher/server:stable #稳定版 ...

  4. Linux系统——MySQL基础(三)

    ### MySQL主从复制实践#### 主从复制实践准备(1)主从复制数据库实战环境准备MySQL主从复制实践对环境的要求比较简单,可以是单机单数据库多实例的环境,也可以是两台服务器,每个机器一个独立 ...

  5. python yield yield from

    1.可迭代对象 具备可迭代的能力,即enumerable,在python中指的是可以通过for-in去逐个访问元素的一些对象,比如元组tuple,列表list,字符串string,文件对象file等. ...

  6. linux服务器---squid限制

    Squid连接限制 Squid可以有效的限制连接,指定哪些用户可以连接,指定哪些网站可以访问,这样就可以有效的利用服务器带宽. 1.限制指定网段不能连接.编辑配置文件”/etc/squid/squid ...

  7. javashop技术培训总结,架构介绍,Eop核心机制

    javashop技术培训一.架构介绍1.Eop核心机制,基于spring的模板引擎.组件机制.上下文管理.数据库操作模板引擎负责站点页面的解析与展示组件机制使得可以在不改变核心代码的情况下实现对应用核 ...

  8. 查找nginx安装的路径以及相关安装操作命令

    查找nginx安装的路径以及相关安装操作命令 Linux环境下,怎么确定Nginx是以那个config文件启动的? [root@localhost ~]# ps -ef | grep nginxroo ...

  9. 在thinkphp里面执行原生的sql语句

    在thinkphp里面执行原生的sql语句 怎样在thinkphp里面执行原生的sql语句? $Model = new Model();//或者 $Model = D(); 或者 $Model = M ...

  10. android 简单的控件前端代码

    /Hello_word/res/layout/activity_main.xml Graphical  Layout/activity_fullsreen.xml(layout/) 代码与设置界面互换 ...