HDU 3642 - Get The Treasury - [加强版扫描线+线段树]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Jack can’t get the total volume of the treasury because these regions don’t always contain treasury. Through years of experience, he discovers that if a region is detected that may have treasury at more than two different spots, the region really exist treasure. And now Jack only wants to know the minimum volume of the treasury.
Now Jack entrusts the problem to you.
Each test case is given in some lines. In the first line there is an integer n (1 ≤ n ≤ 1000), the number of spots on the surface of the earth that he had detected. Then n lines follow, every line contains six integers x1, y1, z1, x2, y2 and z2, separated by a space. The absolute value of x and y coordinates of the vertices is no more than 106, and that of z coordinate is no more than 500.
题意:
给定一些长方体,求这些长方体相交至少3次的体积。
题解:
z坐标的范围 [-500, 500],比较小,所以可以枚举 z平面,用类似于扫描线扫描二维图形的方式,用扫描面扫描整个三维图形,而这些扫描面,就是所有长方体的上下平面,
那么,每个我们扫描得到的截面,就可以按照HDU1542里那样的普通的二维扫描线+线段树来做,求出这样一个截面上,重叠三次及以上的面积有多大,
同时,不难想到,若我们把长方体竖直的四个侧面,看成“下闭上开”(下沿取得到,上沿取不到)的话,当我们枚举到某一个平面 $z_i$ 时,该平面截得的截面,在区间 $\left[ {z_i ,z_{i + 1} } \right)$ 都是不会变动的,这个和普通的二维扫描线+线段树的道理是一样的。
故,枚举到某一个平面 $z_i$ 时,该平面截得的截面积,乘上高度 ${z_{i + 1} - z_i }$ 之后,就是整个“3+次重叠体”在三维区间 $\left[ {z_i ,z_{i + 1} } \right)$ 内的体积。
AC代码:
#include<bits/stdc++.h>
typedef long long ll;
using namespace std; const int maxn=;
const int maxz=; int n; vector<int> x;
inline int getidx(int val){return lower_bound(x.begin(),x.end(),val)-x.begin();} vector<int> z; int tot;
struct Segment
{
int x1,x2,y;
int z1,z2;
int flag;
bool operator <(const Segment &oth)const{
return y<oth.y;
}
}segment[*maxn],tmp[*maxn]; /********************************* Segment Tree - st *********************************/
struct Node{
int l,r;
int s;
int once,twice,more;
void show()
{
printf("l=%d r=%d s=%d once=%d twice=%d more=%d\n",l,r,s,once,twice,more);
}
}node[*maxn];
void pushup(int rt)
{
int ls=rt*,rs=rt*+;
if(node[rt].s>)
{
node[rt].more=x[node[rt].r+]-x[node[rt].l];
node[rt].once=node[rt].twice=;
}
else if(node[rt].s==)
{
if(node[rt].l==node[rt].r)
{
node[rt].more=;
node[rt].twice=x[node[rt].r+]-x[node[rt].l];
node[rt].once=;
}
else
{
node[rt].more=node[ls].once+node[ls].twice+node[ls].more+node[rs].once+node[rs].twice+node[rs].more;
node[rt].twice=x[node[rt].r+]-x[node[rt].l]-node[rt].more;
node[rt].once=;
}
}
else if(node[rt].s==)
{
if(node[rt].l==node[rt].r)
{
node[rt].more=;
node[rt].twice=;
node[rt].once=x[node[rt].r+]-x[node[rt].l];
}
else
{
node[rt].more=node[ls].twice+node[ls].more+node[rs].twice+node[rs].more;
node[rt].twice=node[ls].once+node[rs].once;
node[rt].once=x[node[rt].r+]-x[node[rt].l]-node[rt].more-node[rt].twice;
}
}
else
{
if(node[rt].l==node[rt].r)
{
node[rt].more=;
node[rt].twice=;
node[rt].once=;
}
else
{
node[rt].more=node[ls].more+node[rs].more;
node[rt].twice=node[ls].twice+node[rs].twice;
node[rt].once=node[ls].once+node[rs].once;
}
}
//printf("now pushup rt=%d\t",rt); node[rt].show();
}
void build(int rt,int l,int r)
{
if(l>r) return;
node[rt].l=l; node[rt].r=r;
node[rt].s=;
node[rt].once=node[rt].twice=node[rt].more=;
if(l==r) return;
else
{
int mid=l+(r-l)/;
build(rt*,l,mid);
build(rt*+,mid+,r);
pushup(rt);
}
}
void update(int root,int st,int ed,int val)
{
if(st>node[root].r || ed<node[root].l) return;
if(st<=node[root].l && node[root].r<=ed)
{
node[root].s+=val;
pushup(root);
}
else
{
update(root*,st,ed,val);
update(root*+,st,ed,val);
pushup(root);
}
}
/********************************* Segment Tree - st *********************************/ int main()
{
int T;
scanf("%d",&T);
for(int kase=;kase<=T;kase++)
{
scanf("%d",&n); x.clear();
z.clear();
tot=;
for(int i=;i<=n;i++)
{
int x1,y1,z1,x2,y2,z2;
scanf("%d%d%d%d%d%d",&x1,&y1,&z1,&x2,&y2,&z2); segment[tot].x1=x1; segment[tot].x2=x2; segment[tot].y=y1;
segment[tot].z1=z1; segment[tot].z2=z2;
segment[tot].flag=;
tot++; segment[tot].x1=x1; segment[tot].x2=x2; segment[tot].y=y2;
segment[tot].z1=z1; segment[tot].z2=z2;
segment[tot].flag=-;
tot++; x.push_back(x1);
x.push_back(x2);
z.push_back(z1);
z.push_back(z2);
} sort(x.begin(),x.end());
x.erase(unique(x.begin(),x.end()),x.end()); sort(z.begin(),z.end());
z.erase(unique(z.begin(),z.end()),z.end()); ll ans=;
for(int i=;i<z.size()-;i++)
{
//printf("now z=%d\n",z[i]);
int cnt=;
for(int j=;j<tot;j++) if(segment[j].z1<=z[i] && segment[j].z2>z[i]) tmp[cnt++]=segment[j];
sort(tmp,tmp+cnt); build(,,x.size());
ll area=;
for(int j=;j<cnt-;j++)
{
int l=getidx(tmp[j].x1);
int r=getidx(tmp[j].x2);
//printf("now update y=%d [%d,%d](%d,%d) += %d\n",tmp[j].y,x[l],x[r],l,r-1,tmp[j].flag);
update(,l,r-,tmp[j].flag);
area+=(ll)node[].more*(tmp[j+].y-tmp[j].y);
}
ans+=area*(z[i+]-z[i]);
} printf("Case %d: %I64d\n",kase,ans);
}
}
HDU 3642 - Get The Treasury - [加强版扫描线+线段树]的更多相关文章
- HDU 3265/POJ 3832 Posters(扫描线+线段树)(2009 Asia Ningbo Regional)
Description Ted has a new house with a huge window. In this big summer, Ted decides to decorate the ...
- hdu 4419 Colourful Rectangle (离散化扫描线线段树)
Problem - 4419 题意不难,红绿蓝三种颜色覆盖在平面上,不同颜色的区域相交会产生新的颜色,求每一种颜色的面积大小. 比较明显,这题要从矩形面积并的方向出发.如果做过矩形面积并的题,用线段树 ...
- HDU 1255 覆盖的面积 (扫描线 线段树 离散化 矩形面积并)
题目链接 题意:中文题意. 分析:纯手敲,与上一道题目很相似,但是刚开始我以为只是把cnt>=0改成cnt>=2就行了,. 但是后来发现当当前加入的线段的范围之前 还有线段的时候就不行了, ...
- hdu 3642 Get The Treasury(扫描线)
pid=3642" style="">题目链接:hdu 3642 Get The Treasury 题目大意:三维坐标系,给定若干的长方体,问说有多少位置被覆盖3次 ...
- hdu 3642 Get The Treasury
Get The Treasury http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Othe ...
- 【BZOJ3958】[WF2011]Mummy Madness 二分+扫描线+线段树
[BZOJ3958][WF2011]Mummy Madness Description 在2011年ACM-ICPC World Finals上的一次游览中,你碰到了一个埃及古墓. 不幸的是,你打开了 ...
- 【bzoj4491】我也不知道题目名字是什么 离线扫描线+线段树
题目描述 给定一个序列A[i],每次询问l,r,求[l,r]内最长子串,使得该子串为不上升子串或不下降子串 输入 第一行n,表示A数组有多少元素接下来一行为n个整数A[i]接下来一个整数Q,表示询问数 ...
- hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积
题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...
- P3722 [AH2017/HNOI2017]影魔(单调栈+扫描线+线段树)
题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l ...
随机推荐
- Nginx: error while loading shared libraries: libpcre.so.1解决
Shell代码 [root@tmsapp65 conf]# /usr/local/nginx/sbin/nginx /usr/local/nginx/sbin/nginx: error while l ...
- js节流函数高级版
节流函数其主要作用就是防止用户在短时间内多次触发该事件. <!DOCTYPE html> <html lang="en"> <head> < ...
- DATAGUARD的搭建
ORACLE Data Guard 理论知识 请查看此blog :http://blog.csdn.net/haibusuanyun/article/details/11519241 Oracle D ...
- SaltStack salt-ssh 用法
以下在 master 操作: (1) 我们在安装部署 SaltStack 的时候,需要安装 salt 客户端,还要与 salt 服务端进行认证才能互相通信(2) 如果我们使用 salt-ssh 的方式 ...
- Splash autoload() 方法
autoload() 方法可以设置每个页面访问时自动加载的对象,比如自动加载 JavaScript 代码,自动加载 Ajax 代码等等 注意此方法只负责加载 JavaScript/Ajax 代码,不执 ...
- SimpleDateFormat 取当前周的周一和周日的日期,当前月第一个和最后一天的日期
/** * 类说明 :以及获取当前周的周一和周日的日期,当前月第一个和最后一天的日期 * 日期格式化:格式参数 G 年代标志符 y 年 M 月 d 日 h 时 在上午或下午 (1~12) ...
- transformNative_libsWithStripDebugSymbolForDebug
local.properties #ndk.dir=C\:\\My_other\\Android_SDK\\ndk-bundle 把NDK注释掉就ok了
- c语言学习笔记---符号
专题2.符号的技巧: 1) 注释符与转义符 vC语言中的接续符(\)是指示编译器行为的利器: 接续符的使用:编译器会将反斜杠剔除,嗯在反斜杠后面的字符自动解到前面的一行. 在接续单词时,反斜杠之后不能 ...
- ARM+LINUX嵌入式系统的终端显示中文乱码解决
前一段时间解决的一个问题,看起来是个小问题,实际解决这个问题却花了一个星期的晚上休息时间,记录分享一下. 问题描述: linux内核配置中NLS(native language support)已经选 ...
- GDI+ gif文件的显示和格式转换
GDI+ gif文件的显示和格式转换 gdi+imagedeletenulltiff GDI+ gif文件的显示和格式转换 怎么获取gif文件的每一帧,并且显示出来呢? 1.怎么用gid+显示gi ...