一、简化前馈网络LeNet

import torch as t

class LeNet(t.nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.features = t.nn.Sequential(
t.nn.Conv2d(3, 6, 5),
t.nn.ReLU(),
t.nn.MaxPool2d(2, 2),
t.nn.Conv2d(6, 16, 5),
t.nn.ReLU(),
t.nn.MaxPool2d(2, 2)
)
# 由于调整shape并不是一个class层,
# 所以在涉及这种操作(非nn.Module操作)需要拆分为多个模型
self.classifiter = t.nn.Sequential(
t.nn.Linear(16*5*5, 120),
t.nn.ReLU(),
t.nn.Linear(120, 84),
t.nn.ReLU(),
t.nn.Linear(84, 10)
) def forward(self, x):
x = self.features(x)
x = x.view(-1, 16*5*5)
x = self.classifiter(x)
return x net = LeNet()

二、优化器基本使用方法

  1. 建立优化器实例
  2. 循环:
    1. 清空梯度
    2. 向前传播
    3. 计算Loss
    4. 反向传播
    5. 更新参数
from torch import optim

# 通常的step优化过程
optimizer = optim.SGD(params=net.parameters(), lr=1)
optimizer.zero_grad() # net.zero_grad() input_ = t.autograd.Variable(t.randn(1, 3, 32, 32))
output = net(input_)
output.backward(output) optimizer.step()

三、网络模块参数定制

为不同的子网络参数不同的学习率,finetune常用,使分类器学习率参数更高,学习速度更快(理论上)。

1.经由构建网络时划分好的模组进行学习率设定,

# # 直接对不同的网络模块制定不同学习率
optimizer = optim.SGD([{'params': net.features.parameters()}, # 默认lr是1e-5
{'params': net.classifiter.parameters(), 'lr': 1e-2}], lr=1e-5)

2.以网络层对象为单位进行分组,并设定学习率

# # 以层为单位,为不同层指定不同的学习率
# ## 提取指定层对象
special_layers = t.nn.ModuleList([net.classifiter[0], net.classifiter[3]])
# ## 获取指定层参数id
special_layers_params = list(map(id, special_layers.parameters()))
print(special_layers_params)
# ## 获取非指定层的参数id
base_params = filter(lambda p: id(p) not in special_layers_params, net.parameters())
optimizer = t.optim.SGD([{'params': base_params},
{'params': special_layers.parameters(), 'lr': 0.01}], lr=0.001)

四、在训练中动态的调整学习率

'''调整学习率'''
# 新建optimizer或者修改optimizer.params_groups对应的学习率
# # 新建optimizer更简单也更推荐,optimizer十分轻量级,所以开销很小
# # 但是新的优化器会初始化动量等状态信息,这对于使用动量的优化器(momentum参数的sgd)可能会造成收敛中的震荡
# ## optimizer.param_groups:长度2的list,optimizer.param_groups[0]:长度6的字典
print(optimizer.param_groups[0]['lr'])
old_lr = 0.1
optimizer = optim.SGD([{'params': net.features.parameters()},
{'params': net.classifiter.parameters(), 'lr': old_lr*0.1}], lr=1e-5)

可以看到optimizer.param_groups结构,[{'params','lr', 'momentum', 'dampening', 'weight_decay', 'nesterov'},{……}],集合了优化器的各项参数。

『PyTorch』第十一弹_torch.optim优化器的更多相关文章

  1. 『PyTorch』第十一弹_torch.optim优化器 每层定制参数

    一.简化前馈网络LeNet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 im ...

  2. 『PyTorch』第十三弹_torch.nn.init参数初始化

    初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进 ...

  3. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

    『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...

  4. 『PyTorch』第三弹重置_Variable对象

    『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...

  5. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上

    总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...

  6. 『PyTorch』第十弹_循环神经网络

    RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...

  7. 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法

    在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...

  8. 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数

    一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...

  9. 『PyTorch』第五弹_深入理解autograd_中:Variable梯度探究

    查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和ho ...

随机推荐

  1. layer常用方法代码

    layer是一款近年来备受青睐的web弹层组件,她具备全方位的解决方案,致力于服务各水平段的开发人员,您的页面会轻松地拥有丰富友好的操作体验. 在与同类组件的比较中,layer总是能轻易获胜.她尽可能 ...

  2. 《网络攻防》实验五:MSF基础应用

    IE浏览器渗透攻击--MS11050安全漏洞 实验准备 1.两台虚拟机,其中一台为kali,一台为Windows Xp Professional(两台虚拟机可以相互间ping通). 2.亚军同学的指导 ...

  3. CDC画图

    CDC* pdc: CRect rcBounds: 1. 画直线 pdc->MoveTo(rcBounds.TopLeft());//将画笔移动到左上角这个点,使用这个点作为起点画图 pdc-& ...

  4. insert into 和 where not exists

    https://social.msdn.microsoft.com/Forums/sqlserver/en-US/3569bd60-1299-4fe4-bfa1-d77ffa3e579f/insert ...

  5. Spring batch的学习

    Spring batch是用来处理大量数据操作的一个框架,主要用来读取大量数据,然后进行一定处理后输出成指定的形式. Spring batch主要有以下部分组成: JobRepository     ...

  6. 深度优先搜索之小z的房子与验证码识别

    题目:小z的房子 高级语言程序设计实践题目:2.4 小z 的房子 ★实验任务 小z 通过自己的努力,终于发家致富.现在小明有一个大小为N*M 的 院子,雨后积起了水.四联通的积水被认为是连接在一起的. ...

  7. Kafka 及 PyKafka 的使用

    1. Kafka 1. 简介 Kafka 是一种分布式的.分区的.多副本的基于发布/订阅的消息系统.它是通过 zookeeper 进行协调,常见可以用于 web/nginx 日志.访问日志.消息服务等 ...

  8. HDU 5877 Weak Pair(树状数组+dfs+离散化)

    http://acm.hdu.edu.cn/showproblem.php?pid=5877 题意: 给出一棵树,每个顶点都有权值,现在要你找出满足要求的点对(u,v)数,u是v的祖先并且a[u]*a ...

  9. php五大运行模式CGI,FAST-CGI,CLI,ISAPI,APACHE模式

    做 php 开发的应该都知道 php 运行模式概念吧,本文将要和大家分享的是关于php目前比较常见的五大运行模式:包括cgi .fast-cgi.cli.isapi.apache模块的DLL ,下面作 ...

  10. MVC ---- T4(1)

    T4 模板编辑插件:tangibleT4EditorPlusModellingToolsVS2012.msi 下载地址:http://t4-editor.tangible-engineering.co ...