总结:

1、线性变换运算封闭,加法和乘法

2、特征向量经过线性变换后方向不变

https://en.wikipedia.org/wiki/Linear_map

Examples of linear transformation matrices

In two-dimensional space R2 linear maps are described by 2 × 2 real matrices. These are some examples:

In mathematics, a linear map (also called a linear mappinglinear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication.

An important special case is when V = W, in which case the map is called a linear operator,[1] or an endomorphism of V. Sometimes the term linear function has the same meaning as linear map, while in analytic geometry it does not.

A linear map always maps linear subspaces onto linear subspaces (possibly of a lower dimension);[2] for instance it maps a plane through the origin to a planestraight line or point. Linear maps can often be represented as matrices, and simple examples include rotation and reflection linear transformations.

In the language of abstract algebra, a linear map is a module homomorphism. In the language of category theory it is a morphism in the category of modules over a given ring.

Definition and first consequences

Let  and   be vector spaces over the same field  A function  is said to be a linear map if for any two vectors  and any scalar  the following two conditions are satisfied:

additivity / operation of addition
homogeneity of degree 1 / operation of scalar multiplication

Thus, a linear map is said to be operation preserving. In other words, it does not matter whether you apply the linear map before or after the operations of addition and scalar multiplication.

This is equivalent to requiring the same for any linear combination of vectors, i.e. that for any vectors  and scalars   the following equality holds:[3][4]

Denoting the zero elements of the vector spaces  and   by   and   respectively, it follows that  Let  and  in the equation for homogeneity of degree 1:

 

Occasionally,   and   can be considered to be vector spaces over different fields. It is then necessary to specify which of these ground fields is being used in the definition of "linear". If  and  are considered as spaces over the field  as above, we talk about -linear maps. For example, the conjugation of complex numbers is an -linear map  , but it is not  -linear.

A linear map  with  viewed as a vector space over itself is called a linear functional.[5]

These statements generalize to any left-module  over a ring  without modification, and to any right-module upon reversing of the scalar multiplication.

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs

                    A               {\displaystyle A}   ,它的特征向量(eigenvector,也译固有向量本征向量)                     v               {\displaystyle v}   经过这个线性变换[1]之后,得到的新向量仍然与原来的                     v               {\displaystyle v}   保持在同一条直线上,但其长度或方向也许会改变。即

                    A               {\displaystyle A}   ,它的特征向量(eigenvector,也译固有向量本征向量)                     v               {\displaystyle v}   经过这个线性变换[1]之后,得到的新向量仍然与原来的                     v               {\displaystyle v}   保持在同一条直线上,但其长度或方向也许会改变。即

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that does not change its direction when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation

                    T         (                   v                 )         =         λ                   v                 ,               {\displaystyle T(\mathbf {v} )=\lambda \mathbf {v} ,}  

where λ is a scalar in the field F, known as the eigenvalue, characteristic value, or characteristic root associated with the eigenvector v.

If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector, rendering the above mapping as a matrix multiplication on the left hand side and a scaling of the column vector on the right hand side in the equation

                    A                   v                 =         λ                   v                 .               {\displaystyle A\mathbf {v} =\lambda \mathbf {v} .}  

There is a correspondence between n by n square matrices and linear transformations from an n-dimensional vector space to itself. For this reason, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations.[1][2]

Geometrically an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction that is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.[3]

math.mit.edu/~gs/linearalgebra/ila0601.pdf

A100 was found by using the eigenvalues of A, not by multiplying 100 matrices.

                    A         v         =         λ         v               {\displaystyle Av=\lambda v}  

λ               {\displaystyle \lambda }   标量,即特征向量的长度在该线性变换下缩放的比例,称                     λ               {\displaystyle \lambda }   为其特征值(本征值)。如果特征值为正,则表示                     v               {\displaystyle v}   在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。

                    A         v         =         λ         v               {\displaystyle Av=\lambda v}  

λ               {\displaystyle \lambda }   标量,即特征向量的长度在该线性变换下缩放的比例,称                     λ               {\displaystyle \lambda }   为其特征值(本征值)。如果特征值为正,则表示                     v               {\displaystyle v}   在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。

特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换的更多相关文章

  1. 特征向量-Eigenvalues_and_eigenvectors#Graphs

    https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs A               {\displaystyle A} ...

  2. 知识图谱顶刊综述 - (2021年4月) A Survey on Knowledge Graphs: Representation, Acquisition, and Applications

    知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知 ...

  3. paper 128:奇异值分解(SVD) --- 线性变换几何意义[转]

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真 ...

  4. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  5. 转载:奇异值分解(SVD) --- 线性变换几何意义(上)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  6. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

    Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks o ...

  7. 论文阅读:Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs(2019 ACL)

    基于Attention的知识图谱关系预测 论文地址 Abstract 关于知识库完成的研究(也称为关系预测)的任务越来越受关注.多项最新研究表明,基于卷积神经网络(CNN)的模型会生成更丰富,更具表达 ...

  8. 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》

    Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...

  9. 论文解读《The Emerging Field of Signal Processing on Graphs》

    感悟 看完图卷积一代.二代,深感图卷积的强大,刚开始接触图卷积的时候完全不懂为什么要使用拉普拉斯矩阵( $L=D-W$),主要是其背后的物理意义.通过借鉴前辈们的论文.博客.评论逐渐对图卷积有了一定的 ...

随机推荐

  1. 给树莓派安装看门狗的两种方法,二代B

    树莓派的CPU是保护有硬件看门狗的,可以通过安装模块和值守程序来实现看门狗防止树莓派死机. 安装方法一:watchdog.sh的源码: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

  2. vmware centos7系统虚拟机复制到其他电脑后不能联网问题解决

    虚拟机复制到别的电脑后,无法联网 使用ifconfig命令,没有显示出IP4的网址信息(显示ens33文件配置信息) 在网上查看相关资料,大部分说是mac地址不一致导致 如果配置了mac地址,那么在/ ...

  3. std::string与std::wstring互相转换

    作者:zzandyc来源:CSDN原文:https ://blog.csdn.net/zzandyc/article/details/77540056 版权声明:本文为博主原创文章,转载请附上博文链接 ...

  4. 《计算机图形学》2.1.4 彩色CRT监视器

    CRT监视器利用能发射不同颜色光的荧光层的组合来显示彩色图形.不同荧光层的发射光组合起来,可以生成一种按其比例而定的可见颜色. 显示彩色图形的一种方法是在屏幕上涂上多层不同的荧光粉.发射颜色由电子束在 ...

  5. 手机端点击复制链接到剪切板(以及PC端)

    一直在找如何能点击按钮将一串字符串放到手机的剪切板上,但是可能是因为搜索的关键字不对,一直无果. 向同事请教了一下,给了一个clickboard.js的插件.开始试验的时候,使用手机自带浏览器进行测试 ...

  6. 微信小程序源码案例大全

    微信小程序demo:足球,赛事分析 小程序简易导航 小程序demo:办公审批 小程序Demo:电魔方 小程序demo:借阅伴侣 微信小程序demo:投票 微信小程序demo:健康生活 小程序demo: ...

  7. Delphi2010中DataSnap技术

    文章来源: https://blog.csdn.net/xieyunc/article/details/47865227?_t_t_t=0.3049736963513836 一.为DataSnap系统 ...

  8. springbatch---->springbatch的使用(三)

    这里我们对上篇博客的例子做一个修改性的测试来学习一下springbatch的一些关于chunk的一些有用的特性.我渐渐能意会到,深刻并不等于接近事实. springbatch的学习 一.chunk的s ...

  9. 【转】C/C++函数调用过程分析

    转自:here 这里以一个简单的C语言代码为例,来分析函数调用过程 代码: #include <stdio.h> int func(int param1 ,int param2,int p ...

  10. Doxygen生成C++中文文档配置注意事项

    打开对应的Doxyfile,修改如下: 1.OUTPUT_LANGUAGE = Chinese. 2.INPUT_ENCODING  = GB2312.