特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换
总结:
1、线性变换运算封闭,加法和乘法
2、特征向量经过线性变换后方向不变
https://en.wikipedia.org/wiki/Linear_map
Examples of linear transformation matrices
In two-dimensional space R2 linear maps are described by 2 × 2 real matrices. These are some examples:
- rotation
- by 90 degrees counterclockwise:
- by an angle θ counterclockwise:
- by 90 degrees counterclockwise:
- reflection
- about the x axis:
- about the y axis:
- about the x axis:
- scaling by 2 in all directions:
- horizontal shear mapping:
- squeeze mapping:
- projection onto the y axis:
In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication.
An important special case is when V = W, in which case the map is called a linear operator,[1] or an endomorphism of V. Sometimes the term linear function has the same meaning as linear map, while in analytic geometry it does not.
A linear map always maps linear subspaces onto linear subspaces (possibly of a lower dimension);[2] for instance it maps a plane through the origin to a plane, straight line or point. Linear maps can often be represented as matrices, and simple examples include rotation and reflection linear transformations.
In the language of abstract algebra, a linear map is a module homomorphism. In the language of category theory it is a morphism in the category of modules over a given ring.
Definition and first consequences
Let and
be vector spaces over the same field
A function
is said to be a linear map if for any two vectors
and any scalar
the following two conditions are satisfied:
additivity / operation of addition | |
homogeneity of degree 1 / operation of scalar multiplication |
Thus, a linear map is said to be operation preserving. In other words, it does not matter whether you apply the linear map before or after the operations of addition and scalar multiplication.
This is equivalent to requiring the same for any linear combination of vectors, i.e. that for any vectors and scalars
the following equality holds:[3][4]
Denoting the zero elements of the vector spaces and
by
and
respectively, it follows that
Let
and
in the equation for homogeneity of degree 1:
Occasionally, and
can be considered to be vector spaces over different fields. It is then necessary to specify which of these ground fields is being used in the definition of "linear". If
and
are considered as spaces over the field
as above, we talk about
-linear maps. For example, the conjugation of complex numbers is an
-linear map
, but it is not
-linear.
A linear map with
viewed as a vector space over itself is called a linear functional.[5]
These statements generalize to any left-module over a ring
without modification, and to any right-module upon reversing of the scalar multiplication.
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs
A {\displaystyle A} ,它的特征向量(eigenvector,也译固有向量或本征向量) v {\displaystyle v}
经过这个线性变换[1]之后,得到的新向量仍然与原来的 v {\displaystyle v}
保持在同一条直线上,但其长度或方向也许会改变。即
A {\displaystyle A} ,它的特征向量(eigenvector,也译固有向量或本征向量) v {\displaystyle v}
经过这个线性变换[1]之后,得到的新向量仍然与原来的 v {\displaystyle v}
保持在同一条直线上,但其长度或方向也许会改变。即
In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that does not change its direction when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation
- T ( v ) = λ v , {\displaystyle T(\mathbf {v} )=\lambda \mathbf {v} ,}
where λ is a scalar in the field F, known as the eigenvalue, characteristic value, or characteristic root associated with the eigenvector v.
If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector, rendering the above mapping as a matrix multiplication on the left hand side and a scaling of the column vector on the right hand side in the equation
- A v = λ v . {\displaystyle A\mathbf {v} =\lambda \mathbf {v} .}
There is a correspondence between n by n square matrices and linear transformations from an n-dimensional vector space to itself. For this reason, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations.[1][2]
Geometrically an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction that is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.[3]
math.mit.edu/~gs/linearalgebra/ila0601.pdf
A100 was found by using the eigenvalues of A, not by multiplying 100 matrices.
- A v = λ v {\displaystyle Av=\lambda v}
,
λ {\displaystyle \lambda } 为标量,即特征向量的长度在该线性变换下缩放的比例,称 λ {\displaystyle \lambda }
为其特征值(本征值)。如果特征值为正,则表示 v {\displaystyle v}
在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。
- A v = λ v {\displaystyle Av=\lambda v}
,
λ {\displaystyle \lambda } 为标量,即特征向量的长度在该线性变换下缩放的比例,称 λ {\displaystyle \lambda }
为其特征值(本征值)。如果特征值为正,则表示 v {\displaystyle v}
在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。
特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换的更多相关文章
- 特征向量-Eigenvalues_and_eigenvectors#Graphs
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs A {\displaystyle A} ...
- 知识图谱顶刊综述 - (2021年4月) A Survey on Knowledge Graphs: Representation, Acquisition, and Applications
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知 ...
- paper 128:奇异值分解(SVD) --- 线性变换几何意义[转]
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真 ...
- 转载:奇异值分解(SVD) --- 线性变换几何意义(下)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
- 转载:奇异值分解(SVD) --- 线性变换几何意义(上)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
- Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks o ...
- 论文阅读:Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs(2019 ACL)
基于Attention的知识图谱关系预测 论文地址 Abstract 关于知识库完成的研究(也称为关系预测)的任务越来越受关注.多项最新研究表明,基于卷积神经网络(CNN)的模型会生成更丰富,更具表达 ...
- 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》
Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...
- 论文解读《The Emerging Field of Signal Processing on Graphs》
感悟 看完图卷积一代.二代,深感图卷积的强大,刚开始接触图卷积的时候完全不懂为什么要使用拉普拉斯矩阵( $L=D-W$),主要是其背后的物理意义.通过借鉴前辈们的论文.博客.评论逐渐对图卷积有了一定的 ...
随机推荐
- HTML开发之(块级标签,行内标签,行内块标签)
显示模式的特性: 主要分为两大类: 块级元素:独占一行,对宽高的属性值生效:如果不给宽度,块级元素就默认为浏览器的宽度,即就是100%宽: 行内元素:可以多个标签存在一行,对宽高属性值不生效,完全靠内 ...
- 基础SELECT实例
SELECT查询语句 ---进行单条记录.多条记录.单表.多表.子查询…… SELECT [ALL | DISTINCT | DISTINCTROW ] [HIGH_PRIORITY] [MAX_ST ...
- HBase--阿里未来发展
最近家里没网络,在公司加班写哈博客. HBase是一个开源的非关系型分布式数据库(NoSQL),基于谷歌的BigTable建模,是一个高可靠性.高性能.高伸缩的分布式存储系统,使用HBase技术可在廉 ...
- Ansible 使用 Playbook 管理 Nginx 配置文件
前面我们已经安装完 Nginx,但是在日常维护中经常需要修改配置文件,并重新加载配置文件,因此来写一个管理 Nginx 配置文件的 Playbook: [root@localhost ~]$ mkdi ...
- linux clamav杀毒软件的安装
一.概述 Linux比其它操作系统更稳定更安全.理论上Linux是有可能被病毒侵害的.但实际上 Linux机器几乎不可能遭受病毒的攻击.所以我这里的问题是为什么要为Linux准备防病毒软件,为了更好理 ...
- HipHop的原理
HipHop的原理 HipHop将PHP代码转换为高度优化的C++代码,然后再用g++编译器编译.它可以保持语义等效地执行源代码,但为了提高性能,牺牲了一些很少用到的特性,比如eval(). HipH ...
- MongoDB开篇
1.安装MongoDB 官方下载地址 https://www.mongodb.com/download-center#community 这个文件下载的有些奇怪,这个zip的文件下载下来和百度出来 ...
- 剑指offer——35复杂链表的复制
这题很是巧妙. 突破了常规思维. 竟然可以把传入进来的链表和复制的链表链在一起.然后再算出slibling指针.最后在分离. 直接把空间复杂度变为O(1)了. 很巧妙,很实用. 题目: 请实现函数Co ...
- LeetCode - 637. Average of Levels in Binary Tree
Given a non-empty binary tree, return the average value of the nodes on each level in the form of an ...
- 使用SQLite3工具查看sqlite.db文件
http://www.sqlite.org OS X自从10.4后把SQLite这套相当出名的数据库软件,放进了作业系统工具集里.OS X包装的是第三版的SQLite,又称SQLite3.这套软件有几 ...