什么是LruCache?

LruCache实现原理是什么?

这两个问题其实可以作为一个问题来回答,知道了什么是 LruCache,就只然而然的知道 LruCache 的实现原理;Lru的全称是Least Recently Used ,近期最少使用的!所以我们可以推断出 LruCache 的实现原理:把近期最少使用的数据从缓存中移除,保留使用最频繁的数据,那具体代码要怎么实现呢,我们进入到源码中看看。

LruCache源码分析


public class LruCache<K, V> {
//缓存 map 集合,为什么要用LinkedHashMap
//因为没错取了缓存值之后,都要进行排序,以确保
//下次移除的是最少使用的值
private final LinkedHashMap<K, V> map;
//当前缓存的值
private int size;
//最大值
private int maxSize;
//添加到缓存中的个数
private int putCount;
//创建的个数
private int createCount;
//被移除的个数
private int evictionCount;
//命中个数
private int hitCount;
//丢失个数
private int missCount; //实例化 Lru,需要传入缓存的最大值
//这个最大值可以是个数,比如对象的个数,也可以是内存的大小
//比如,最大内存只能缓存5兆
public LruCache(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
} //重置最大缓存的值
public void resize(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
} synchronized (this) {
this.maxSize = maxSize;
}
trimToSize(maxSize);
} //通过 key 获取缓存值
public final V get(K key) {
if (key == null) {
throw new NullPointerException("key == null");
} V mapValue;
synchronized (this) {
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
} //如果没有,用户可以去创建
V createdValue = create(key);
if (createdValue == null) {
return null;
} synchronized (this) {
createCount++;
mapValue = map.put(key, createdValue); if (mapValue != null) {
// There was a conflict so undo that last put
map.put(key, mapValue);
} else {
//缓存的大小改变
size += safeSizeOf(key, createdValue);
}
}
//这里没有移除,只是改变了位置
if (mapValue != null) {
entryRemoved(false, key, createdValue, mapValue);
return mapValue;
} else {
//判断缓存是否越界
trimToSize(maxSize);
return createdValue;
}
} //添加缓存,跟上面这个方法的 create 之后的代码一样的
public final V put(K key, V value) {
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
} V previous;
synchronized (this) {
putCount++;
size += safeSizeOf(key, value);
previous = map.put(key, value);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
} if (previous != null) {
entryRemoved(false, key, previous, value);
} trimToSize(maxSize);
return previous;
} //检测缓存是否越界
private void trimToSize(int maxSize) {
while (true) {
K key;
V value;
synchronized (this) {
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
}
//如果没有,则返回
if (size <= maxSize) {
break;
}
//以下代码表示已经超出了最大范围
Map.Entry<K, V> toEvict = null;
for (Map.Entry<K, V> entry : map.entrySet()) {
toEvict = entry;
} if (toEvict == null) {
break;
}
//移除最后一个,也就是最少使用的缓存
key = toEvict.getKey();
value = toEvict.getValue();
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
} entryRemoved(true, key, value, null);
}
} //手动移除,用户调用
public final V remove(K key) {
if (key == null) {
throw new NullPointerException("key == null");
} V previous;
synchronized (this) {
previous = map.remove(key);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
} if (previous != null) {
entryRemoved(false, key, previous, null);
} return previous;
}
//这里用户可以重写它,实现数据和内存回收操作
protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {} protected V create(K key) {
return null;
} private int safeSizeOf(K key, V value) {
int result = sizeOf(key, value);
if (result < 0) {
throw new IllegalStateException("Negative size: " + key + "=" + value);
}
return result;
} //这个方法要特别注意,跟我们实例化 LruCache 的 maxSize 要呼应,怎么做到呼应呢,比如 maxSize 的大小为缓存的个数,这里就是 return 1就 ok,如果是内存的大小,如果5M,这个就不能是个数 了,这是应该是每个缓存 value 的 size 大小,如果是 Bitmap,这应该是 bitmap.getByteCount();
protected int sizeOf(K key, V value) {
return 1;
} //清空缓存
public final void evictAll() {
trimToSize(-1); // -1 will evict 0-sized elements
} public synchronized final int size() {
return size;
} public synchronized final int maxSize() {
return maxSize;
} public synchronized final int hitCount() {
return hitCount;
} public synchronized final int missCount() {
return missCount;
} public synchronized final int createCount() {
return createCount;
} public synchronized final int putCount() {
return putCount;
} public synchronized final int evictionCount() {
return evictionCount;
} public synchronized final Map<K, V> snapshot() {
return new LinkedHashMap<K, V>(map);
}
}

LruCache 使用

先来看两张内存使用的图

                             图-1

                            图-2

以上内存分析图所分析的是同一个应用的数据,唯一不同的是图-1没有使用 LruCache,而图-2使用了 LruCache;可以非常明显的看到,图-1的内存使用明显偏大,基本上都是在30M左右,而图-2的内存使用情况基本上在20M左右。这就足足省了将近10M的内存!

ok,下面把实现代码贴出来

/**
* Created by gyzhong on 15/4/5.
*/
public class LruPageAdapter extends PagerAdapter { private List<String> mData ;
private LruCache<String,Bitmap> mLruCache ;
private int mTotalSize = (int) Runtime.getRuntime().totalMemory();
private ViewPager mViewPager ; public LruPageAdapter(ViewPager viewPager ,List<String> data){
mData = data ;
mViewPager = viewPager ;
/*实例化LruCache*/
mLruCache = new LruCache<String,Bitmap>(mTotalSize/5){ /*当缓存大于我们设定的最大值时,会调用这个方法,我们可以用来做内存释放操作*/
@Override
protected void entryRemoved(boolean evicted, String key, Bitmap oldValue, Bitmap newValue) {
super.entryRemoved(evicted, key, oldValue, newValue);
if (evicted && oldValue != null){
oldValue.recycle();
}
}
/*创建 bitmap*/
@Override
protected Bitmap create(String key) {
final int resId = mViewPager.getResources().getIdentifier(key,"drawable",
mViewPager.getContext().getPackageName()) ;
return BitmapFactory.decodeResource(mViewPager.getResources(),resId) ;
}
/*获取每个 value 的大小*/
@Override
protected int sizeOf(String key, Bitmap value) {
return value.getByteCount();
}
} ;
} @Override
public Object instantiateItem(ViewGroup container, int position) {
View view = LayoutInflater.from(container.getContext()).inflate(R.layout.view_pager_item, null) ;
ImageView imageView = (ImageView) view.findViewById(R.id.id_view_pager_item);
Bitmap bitmap = mLruCache.get(mData.get(position));
imageView.setImageBitmap(bitmap);
container.addView(view);
return view;
} @Override
public void destroyItem(ViewGroup container, int position, Object object) {
container.removeView((View) object);
} @Override
public int getCount() {
return mData.size();
} @Override
public boolean isViewFromObject(View view, Object object) {
return view == object;
}
}

总结

1、LruCache 是基于 Lru算法实现的一种缓存机制; 
2、Lru算法的原理是把近期最少使用的数据给移除掉,当然前提是当前数据的量大于设定的最大值。 
3、LruCache 没有真正的释放内存,只是从 Map中移除掉数据,真正释放内存还是要用户手动释放。

 

Android lrucache 实现与使用(Android内存优化)的更多相关文章

  1. Android内存优化之 LruCache与DiskLruCache

    在日常的Adroid开发中我们经常遇到需要处理大量图片的地方,但Android手机的内存有限该怎么避免手机 内存溢出导致app程序oom,google提供了两种解决方式 LruCache LruCac ...

  2. LruCache详解之 Android 内存优化

    概念: LruCache 什么是LruCache? LruCache实现原理是什么? 这两个问题其实可以作为一个问题来回答,知道了什么是 LruCache,就只然而然的知道 LruCache 的实现原 ...

  3. ANDROID内存优化——大汇总(转)

    原文作者博客:转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! ANDROID内存优化(大汇总——上) 写在最前: 本文的思路主要借鉴了20 ...

  4. 【MDCC技术大咖秀】Android内存优化之OOM

    大神分析的很全面,所以就转过来保存一份,转自:http://www.csdn.net/article/2015-09-18/2825737/1 以下为正文: Android的内存优化是性能优化中很重要 ...

  5. ANDROID内存优化(大汇总——中)

    转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! 写在最前: 本文的思路主要借鉴了2014年AnDevCon开发者大会的一个演讲PPT,加上 ...

  6. Android内存优化之OOM

    内容大多都是和OOM有关的实践总结概要.理解错误或是偏差的地方,还请多包涵指正,谢谢!本人Q:1524447071 (一)Android的内存管理机制 Google在Android的官网上有这样一篇文 ...

  7. 【腾讯Bugly干货分享】Android内存优化总结&实践

    本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:https://mp.weixin.qq.com/s/2MsEAR9pQfMr1Sfs7cPdWQ 导语 智 ...

  8. Android避免OOM(内存优化)

    Android内存优化是性能优化很重要的一部分,而如何避免OOM又是内存优化的核心. Android内存管理机制 android官网有一篇文章 Android是如何管理应用的进程与内存分配 Andro ...

  9. Android内存优化总结【整理】

    http://blog.csdn.net/tiantangrenjian/article/details/39182293 [前段时间接到任务着手进行app的内存优化,从各种各样的渠道搜索相关资料,最 ...

随机推荐

  1. javascript中this的妙用

    this是javascript语言的一个关键字,它代表函数运行时,自动生成的一个内部对象,只能在函数内部使用. this总是指向对象,并且为调用函数的那个对象: //调用普通函数 function f ...

  2. PHP 字符串编码的转换

    原文链接:http://mangguo.org/php-string-encoding-convert-and-detect/ GBK 和 UTF-8 编码的转换是一个非常恶心的事情,比如像 PHP ...

  3. Linux中禁用THP(Transparent Huge Pages)

    一.简介 Centos6开始引入THP,Centos7时默认启用,用来提升内存性能. 二.说明 争对一些数据库,如Oracle.MariaDB.MongoDB.VoltDB在使用时,要求关闭此功能. ...

  4. Vue.js 2.0 独立构建和运行时构建的区别

    Vue.js 2.0 独立构建和运行时构建的区别 在使用 Vue.js 2.0 时,有独立构建(standalone)和运行时构建(runtime-only)两种版本可供选择.而在 Vue.js 1. ...

  5. Elasticsearch cluster health: yellow unassigned shards

    查看ES各个分片的状态 $ curl -XGET http://127.0.0.1:9200/_cluster/health?pretty { "cluster_name" : & ...

  6. Cocos开发中可能会遇到的问题

      开发中碰到的问题及解决方案: 1:场景工程中没有被依赖关联的图片声音或者其它资源,导出到微信后找不到 有些在场景工程中没有指定而通过代码中动态加载的资源,cocos creator不会导出到发布目 ...

  7. C3P0连接池使用教程

     转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6405861.html  在项目中的应用见: https://github.com/ygj0930/Coupl ...

  8. android camera preview常用格式

    在Camera中推荐使用NV21和YV12,因为这两种格式支持所有的相机设备. 但是在Camera2中,推荐使用的格式则是YUV_420_888. 总的来说,在Android里面YUV用得比较多的应该 ...

  9. [nQSError: 37001]Could not connect to the Oracle BI Server Instance

    [nQSError: 37001]Could not connect to the Oracle BI Server Instance 使用本机的OBIEE Client 的Oracle BI管理工具 ...

  10. 【Shell】Linux的判断表达式:-d,-f,-e等

    文件比较运算符 表达式         说明                            案例 -e filename    如果filename存在,则为真        [ –e /et ...