前面我们讲过GO.db这个包,现在接着延伸topGO包,该包是用来协助GO富集分析

1)安装

if("topGO" %in% rownames(installed.packages()) == FALSE) {source("http://bioconductor.org/biocLite.R");biocLite("topGO")}
suppressMessages(library(topGO))
ls("package:topGO")

2)使用方法

该包主要有三个使用步骤:

2.1、Data preparation:准备数据集,用于构建 topGOdata.对象。

2.1.1、包括gene标识符(List of genes identifiers)及相应的分值gene scores(例如p值等)
2.1.2、差异表达基因list或经一定标准按照分值筛选的基因集用于后续分析(list of differentially expressed genes or a criteria for selecting genes
        based on their scores);
2.1.3、identifier和GO term间的map,即GOterm表:(gene-to-GO annotations ) ####例如测试文件中的geneid2go.map
2.1.4、GO的层级结构,由GO.db提供,目前这个包只支持GO.db提供的结构

goterm表示例(gene-to-GO annotations ):

2.2、Running enrichment tests:进行富集分析,用任何可行的混合统计测试和方法来处理 GO拓扑结构(GO topology)

2.3、Analysis results:用 summary functions 和 visualisation tools对第二步进行统计和可视化

3)简单示例(guide)

3.1.1、准备输入文件

library(ALL)
data(ALL)
data(geneList) ##文件1:基因list,
affyLib <- paste(annotation(ALL), "db", sep = ".") #####"hgu95av2.db"
library(package = affyLib, character.only = TRUE) ########GO term表
sum(topDiffGenes(geneList) ###选择差异基因集,

3.1.2、构建 topGOdata对象(核心步骤):

sampleGOdata <- new("topGOdata",
description = "Simple session", ##topGOdata的描述,可选
         ontology = "BP", ##可指定要分析的GO term的类型,即BP、CC之类
allGenes = geneList, ##基因identifier的原始列表
         geneSel = topDiffGenes, ##geneSelectionFun联合作用,筛选出后续参与分析的基因
nodeSize = 10, ##富集的GO term辖下基因的最小数目,这里选择10.即最少10个
annot = annFUN.db, ##提取gene-to-GO mappings 的对应关系
        affyLib = affyLib)
sampleGOdata

3.2 Performing the enrichment tests

有了topGOdata对象,接下来就可以用来进行富集分析。这里用两种检验方法:Fisher’s exact test (基于 gene counts)和Kolmogorov-Smirnov like test (computes enrichment based on gene scores)。
其中用runTest函数来进行这些检验,该函数含有3个参数:第一个是topGOdata对象、第二个是algorithm(用于指定处理 GO graph structured的方法)、第三个是statistic(用于指定检验方法)

resultFisher <- runTest(sampleGOdata, algorithm = "classic", statistic = "fisher")   ##Fisher’s exact test

resultKS <- runTest(sampleGOdata, algorithm = "classic", statistic = "ks")  #Kolmogorov-Smirnov test,classic method
resultKS.elim <- runTest(sampleGOdata, algorithm = "elim", statistic = "ks")#Kolmogorov-Smirnov test, elim method

3.3 Analysis of results

当富集检验结束后,我们就可以分析并解析结果。

runTest()这个函数用来分析显著富集的 GO terms及其相应的p值。

allRes <- GenTable(sampleGOdata,                 ##之前构建的topGOdata实例
      classicFisher = resultFisher, ##生成GO graphde的方法
classicKS = resultKS, ##生成GO graphde的方法
      elimKS = resultKS.elim, ##生成GO graphde的方法
orderBy = "elimKS",
      ranksOf = "classicFisher",
      topNodes = 10) ##这里显示前10个显著结果

用 score()函数来测评topGO结果对象中 GO term的 p-values ,并用散点图来说明。

pValue.classic <- score(resultKS)
pValue.elim <- score(resultKS.elim)[names(pValue.classic)]
gstat <- termStat(sampleGOdata, names(pValue.classic))
gSize <- gstat$Annotated / max(gstat$Annotated) * 4
plot(pValue.classic, pValue.elim, xlab = "p-value classic", ylab = "p-value elim",pch = 19, cex = gSize)

差看显著富集的GO terms在 GO graph中的分布.

showSigOfNodes(sampleGOdata, score(resultKS.elim), firstSigNodes = 5, useInfo = 'all')

4)实战

4.1 原始数据集的准备(上面的4个文件)

library(topGO)
library(ALL) ##准备数据集
data(ALL) ##文件1:原始数据集
BPterms <- ls(GOBPTerm)
MFterms <- ls(GOMFTerm)
CCterms <- ls(GOCCTerm)
head(BPterms)
head(MFterms)
head(CCterms) library(genefilter) ##对原始数据进行过滤
selProbes <- genefilter(ALL, filterfun(pOverA(0.20, log2(100)), function(x) (IQR(x) > 0.25)))#数据清洗
eset <- ALL[selProbes, ] ##数据清洗:这里去掉及其低表达的基因,及探针在每个样品中表达变化不大的的基因

myInterestingGenes <- sample(geneNames, length(geneNames) / 10) #文件二:经一定标准对p值等筛选获取感兴趣基因集用于后续分析
geneList <- factor(as.integer(geneNames %in% myInterestingGenes))
names(geneList) <- geneNames
str(geneList) geneID2GO <- readMappings(file = system.file("examples/geneid2go.map", package = "topGO"))##文件三:goterm的map文件
str(head(geneID2GO)) GO2geneID <- inverseList(geneID2GO) ###额外知识:用inverseList()函数实现gene-to-GOs与 GO-to-genes 之间的转换
str(head(GO2geneID)) ##

topGO的更多相关文章

  1. 10、差异基因topGO富集

    参考:http://www.biotrainee.com/thread-558-1-1.html http://bioconductor.org/packages/3.7/bioc/ http://w ...

  2. R: 修改镜像、bioconductor安装及go基因富集分析

    1.安装bioconductor及go分析涉及的相关包 source("http://bioconductor.org/biocLite.R") options(BioC_mirr ...

  3. 20155205 2016-2017-2 《Java程序设计》第6周学习总结

    20155205 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 第十章 在Java中,输入串流代表对象为Java.io.InputStream实例,输出串流 ...

  4. 20155318 2016-2017-2 《Java程序设计》第六周学习总结

    20155318 2016-2017-2 <Java程序设计>第六周学习总结 教材学习内容总结 学习目标 理解流与IO 理解InputStream/OutPutStream的继承架构 理解 ...

  5. 20155328 2016-2017-2 《Java程序设计》第六周 学习总结

    20155328 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 根据不同的分类标准,IO可分为:输入/输出流:字节/字符流:节点/处理流. 在不使用Inpu ...

  6. 20155339 2016-2017-2 《Java程序设计》第6周学习总结

    20155339 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 第十章 串流设计 Java将输入/输出抽象化为串流,数据有来源及目的地,衔接两者的是串流对象 ...

  7. 20155224 2016-2017-2 《Java程序设计》第6周学习总结

    20155224 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 Thread线程: 定义某线程后,要有 xxx.stard(); Thread.sleep( ...

  8. 20155237 2016-2017-2 《Java程序设计》第6周学习总结

    20155237 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 第十章 输入与输出 InputStream与OutputStream 流(Stream)是对 ...

  9. 20155229 2016-2017-2 《Java程序设计》第六周学习总结

    20155229 2016-2017-2 <Java程序设计>第六周学习总结 教材学习内容总结 第十章 Java中,输入串流代表对象为java.io.InputStream,输出串流代表对 ...

随机推荐

  1. 轻松理解execl系列函数

    execl函数功能如下:启动一个可执行文件,并且对他进行传送参数.一些原型如下 #include <unistd.h> extern char **environ; int execl(c ...

  2. Mysql 性能优化2 系统参数配置方法 和 文件系统

    --------------------------------------------目录------------------------------------------------- • 关于 ...

  3. 学习笔记之XML

    什么是QName - Benjieming_Wang的专栏 - CSDN博客 http://blog.csdn.net/Benjieming_Wang/article/details/5959961 ...

  4. 1010 Radix (25 分)

    1010 Radix (25 分) Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 1 ...

  5. 小项目,吃货联盟,java初级小项目,源代码

    1:项目的实现效果.功能如图所示. 2:项目的源代码如下: import java.util.Scanner; /** * 吃货联盟订餐管理系统 * */ public class OrderingM ...

  6. oracle共享与专用模式的动态转换及区别(转载)

    一直没对专用于共享的互换搞清楚,找到了这篇文章 http://blog.csdn.net/tianlesoftware/archive/2010/06/26/5695784.aspx ,让我实践了一把 ...

  7. php 流程控制switch实例

    switch允许对一个标量(表达式)的多个可能结果做选择. 语法: switch (expr) { case result1: statement1 break; case result2: stat ...

  8. 腾讯优图&港科大提出一种基于深度学习的非光流 HDR 成像方法

    目前最好的高动态范围(HDR)成像方法通常是先利用光流将输入图像对齐,随后再合成 HDR 图像.然而由于输入图像存在遮挡和较大运动,这种方法生成的图像仍然有很多缺陷.最近,腾讯优图和香港科技大学的研究 ...

  9. IDEA在编辑时提示could not autowire

    IDEA在编辑时提示could not autowire 原创 2016年05月14日 10:53:38 28338 在开发中我再applicationContext-dao.xml中加入了mappe ...

  10. 20180129周一之学习PYTHON笔记【PYTHON2写个自动点击学习功能】

    pyautogui.click(pyautogui.center(pyautogui.locateOnScreen('sy.png'))) #点击该截图一次 --------------------- ...