暑假,小哼准备去一些城市旅游。有些城市之间有公路,有些城市之间则没有,如下图。为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程。
        上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径。这个问题这也被称为“多源最短路径”问题。
        现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储。比如1号城市到2号城市的路程为2,则设e[1][2]的值为2。2号城市无法到达4号城市,则设置e[2][4]的值为∞。另外此处约定一个城市自己是到自己的也是0,例如e[1][1]为0,具体如下。
        现在回到问题:如何求任意两点之间最短路径呢?通过之前的学习我们知道通过深度或广度优先搜索可以求出两点之间的最短路径。所以进行n2遍深度或广度优先搜索,即对每两个点都进行一次深度或广度优先搜索,便可以求得任意两点之间的最短路径。可是还有没有别的方法呢?
 
        我们来想一想,根据我们以往的经验,如果要让任意两点(例如从顶点a点到顶点b)之间的路程变短,只能引入第三个点(顶点k),并通过这个顶点k中转即a->k->b,才可能缩短原来从顶点a点到顶点b的路程。那么这个中转的顶点k是1~n中的哪个点呢?甚至有时候不只通过一个点,而是经过两个点或者更多点中转会更短,即a->k1->k2b->或者a->k1->k2…->k->i…->b。比如上图中从4号城市到3号城市(4->3)的路程e[4][3]原本是12。如果只通过1号城市中转(4->1->3),路程将缩短为11(e[4][1]+e[1][3]=5+6=11)。其实1号城市到3号城市也可以通过2号城市中转,使得1号到3号城市的路程缩短为5(e[1][2]+e[2][3]=2+3=5)。所以如果同时经过1号和2号两个城市中转的话,从4号城市到3号城市的路程会进一步缩短为10。通过这个的例子,我们发现每个顶点都有可能使得另外两个顶点之间的路程变短。好,下面我们将这个问题一般化。
        当任意两点之间不允许经过第三个点时,这些城市之间最短路程就是初始路程,如下。
 

假如现在只允许经过1号顶点,求任意两点之间的最短路程,应该如何求呢?只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

for(i=1;i<=n;i++)

{
for(j=;j<=n;j++)
{
if ( e[i][j] > e[i][]+e[][j] )
e[i][j] = e[i][]+e[][j];
}
}

在只允许经过1号顶点的情况下,任意两点之间的最短路程更新为:

        通过上图我们发现:在只通过1号顶点中转的情况下,3号顶点到2号顶点(e[3][2])、4号顶点到2号顶点(e[4][2])以及4号顶点到3号顶点(e[4][3])的路程都变短了。
 
        接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。如何做呢?我们需要在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。
//经过1号顶点
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if (e[i][j] > e[i][]+e[][j]) e[i][j]=e[i][]+e[][j]; //经过2号顶点
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if (e[i][j] > e[i][]+e[][j]) e[i][j]=e[i][]+e[][j];

在只允许经过1和2号顶点的情况下,任意两点之间的最短路程更新为:

        通过上图得知,在相比只允许通过1号顶点进行中转的情况下,这里允许通过1和2号顶点进行中转,使得e[1][3]和e[4][3]的路程变得更短了。
        同理,继续在只允许经过1、2和3号顶点进行中转的情况下,求任意两点之间的最短路程。任意两点之间的最短路程更新为:
        最后允许通过所有顶点作为中转,任意两点之间最终的最短路程为:
        整个算法过程虽然说起来很麻烦,但是代码实现却非常简单,核心代码只有五行:
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。用一句话概括就是:从i号顶点到j号顶点只经过前k号点的最短路程。

#include <stdio.h>
int main()
{
int e[][],k,i,j,n,m,t1,t2,t3;
int inf=; //用inf(infinity的缩写)存储一个我们认为的正无穷值
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m); //初始化
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(i==j) e[i][j]=;
else e[i][j]=inf; //读入边
for(i=;i<=m;i++)
{
scanf("%d %d %d",&t1,&t2,&t3);
e[t1][t2]=t3;
} //Floyd-Warshall算法核心语句
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j] )
e[i][j]=e[i][k]+e[k][j]; //输出最终的结果
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
printf("%10d",e[i][j]);
}
printf("\n");
} return ;
}
另外需要注意的是:Floyd-Warshall算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如下面这个图就不存在1号顶点到3号顶点的最短路径。因为1->2->3->1->2->3->…->1->2->3这样路径中,每绕一次1->-2>3这样的环,最短路就会减少1,永远找不到最短路。其实如果一个图中带有“负权回路”那么这个图则没有最短路。

转自:http://blog.csdn.net/qq_34374664/article/details/52261672

最短路径-Floyd算法(转载)的更多相关文章

  1. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  2. 7-8 哈利·波特的考试(25 分)(图的最短路径Floyd算法)

    7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...

  3. 最短路径(Floyd)算法

    #include <stdio.h>#include <stdlib.h>/* Floyd算法 */#define VNUM 5#define MV 65536int P[VN ...

  4. 单源最短路径——Floyd算法

    正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意 ...

  5. 最短路径Floyd算法【图文详解】

    Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被 ...

  6. 【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?

    简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以 ...

  7. 图论之最短路径floyd算法

    Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径. 它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径. 举例说明最优子结构性质,上图中1号到5 ...

  8. 最短路径—Floyd算法

    Floyd算法 所有顶点对之间的最短路径问题是:对于给定的有向网络G=(V,E),要对G中任意两个顶点v,w(v不等于w),找出v到w的最短路径.当然我们可以n次执行DIJKSTRA算法,用FLOYD ...

  9. 最短路径——Floyd算法(含证明)

    通过dij,ford,spfa等算法可以快速的得到单源点的最短路径,如果想要得到图中任意两点之间的最短路径,当然可以选择做n遍的dij或是ford,但还有一个思维量较小的选择,就是floyd算法. 多 ...

  10. 多源最短路径Floyd算法

    多源最短路径是求图中任意两点间的最短路,采用动态规划算法,也称为Floyd算法.将顶点编号为0,1,2...n-1首先定义dis[i][j][k]为顶点 i 到 j 的最短路径,且这条路径只经过最大编 ...

随机推荐

  1. 学hadoop需要什么基础

    最近一段时间一直在接触关于hadoop方面的内容,从刚接触时的一片空白,到现在也能够说清楚一些问题.这中间到底经历过什么只怕也就是只有经过的人才会体会到吧.前几天看到有个人问“学hadoop需要什么基 ...

  2. php 目录操作

    1.打开文件: opendir("文件名称"); 2.读取文件:readdir("文件名称"); <?php $dirname="phpMyAd ...

  3. MySQL数据库函数

    一:字符串函数: 1.concat(); concat(S1,S2,S3,......Sn); 把传入参数链接 成一个字符串; 2.insert(); insert(str,x,y,insert); ...

  4. linux 标准I/O (一)

    在前面<UNIX环境高级编程----文件描述符浅析>一文中所讲的I/O函数都是针对文件描述符.而对于标准I/O库,它们的操作都是围绕流来进行的.当用标准I/O库打开或创建一个文件时,我们已 ...

  5. win8设置开机启动项

    c:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

  6. ASP.NET Web Pages:页面布局

    ylbtech-.Net-ASP.NET Web Pages:页面布局 1.返回顶部 1. ASP.NET Web Pages - 页面布局 通过 Web Pages ,创建一个布局一致的网站是很容易 ...

  7. 1109 Group Photo (25 分)

    1109 Group Photo (25 分) Formation is very important when taking a group photo. Given the rules of fo ...

  8. 管理11gRAC基本命令 (转载)

    在 Oracle Clusterware 11g 第 2 版 (11.2) 中,有许多子程序和命令已不再使用:    crs_stat    crs_register    crs_unregiste ...

  9. sqoop操作之ORACLE导入到HIVE

    导入表的所有字段 sqoop import --connect jdbc:oracle:thin:@192.168.1.107:1521:ORCL \ --username SCOTT --passw ...

  10. CCKS 2018 | 最佳论文:南京大学提出DSKG,将多层RNN用于知识图谱补全

    作者:Lingbing Guo.Qingheng Zhang.Weiyi Ge.Wei Hu.Yuzhong Qu 2018 年 8 月 14-17 日,主题为「知识计算与语言理解」的 2018 全国 ...