题意:

小于等于n的所有数中1的出现次数

分析:

数位DP

预处理dp[i][j]存 从1~以j开头的i位数中有几个1,那么转移方程为:

if(j == 1) dp[i][j] = dp[i-1][9]*2+pow(10,i-1);
else dp[i][j] = dp[i-1][9]+dp[i][j-1];

然后注意下对于每个询问统计的时候如果当前位为1需要额外加上他后面所有位数的个数,就是n%pow(10,i-1);

这样总复杂度log(n)*10

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
const int INF = 0x3f3f3f3f, MAXN = ;
int dp[MAXN][];///dp[i][j]从1~以j开头的i位数中有几个1
int bit[MAXN]; int main()
{
#ifdef SHY
freopen("d:\\1.txt", "r", stdin);
#endif
int tmp = ;
rep(i,,) dp[][i] = ;
repe(i,,)
{
rep(j,,)
{
if(j == ) dp[i][j] = dp[i-][]+tmp;
else dp[i][j] = dp[i][j-];
dp[i][j] += dp[i-][];
}
tmp *= ;
}
int n,cnt = ;
scanf("%d", &n);
tmp = n;
while(tmp)
{
bit[++cnt] = tmp%;
tmp /= ;
}
int ans = ,sum = ;
per(i,cnt,)
{
if(bit[i] == ) continue;
if(bit[i] == )
ans += dp[i-][]++n%((int)pow(,i-));
else
ans += dp[i][bit[i]-];
}
printf("%d\n", ans);
return ;
}

2.

解题关键:数位dp,对每一位进行考虑,通过过程得出每一位上1出现的次数

1位数的情况:

在解法二中已经分析过,大于等于1的时候,有1个,小于1就没有。

2位数的情况:

N=13,个位数出现的1的次数为2,分别为1和11,十位数出现1的次数为4,分别为10,11,12,13,所以f(N) = 2+4。

N=23,个位数出现的1的次数为3,分别为1,11,21,十位数出现1的次数为10,分别为10~19,f(N)=3+10。

由此我们发现,个位数出现1的次数不仅和个位数有关,和十位数也有关,如果个位数大于等于1,则个位数出现1的次数为十位数的数字加1;如果个位数为0,个位数出现1的次数等于十位数数字。而十位数上出现1的次数也不仅和十位数相关,也和个位数相关:如果十位数字等于1,则十位数上出现1的次数为个位数的数字加1,假如十位数大于1,则十位数上出现1的次数为10。

3位数的情况:

N=123

个位出现1的个数为13:1,11,21,…,91,101,111,121

十位出现1的个数为20:10~19,110~119

百位出现1的个数为24:100~123

我们可以继续分析4位数,5位数,推导出下面一般情况:

假设N,我们要计算百位上出现1的次数,将由三部分决定:百位上的数字,百位以上的数字,百位一下的数字。

如果百位上的数字为0,则百位上出现1的次数仅由更高位决定,比如12013,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,共1200个。等于更高位数字乘以当前位数,即12 * 100。

如果百位上的数字大于1,则百位上出现1的次数仅由更高位决定,比如12213,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,12100~12199共1300个。等于更高位数字加1乘以当前位数,即(12 + 1)*100。

        如果百位上的数字为1,则百位上出现1的次数不仅受更高位影响,还受低位影响。例如12113,受高位影响出现1的情况:100~199,1100~1199,2100~2199,…,11100~11199,共1200个,但它还受低位影响,出现1的情况是12100~12113,共114个,等于低位数字113+1。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int solve(int n){
int cnt=,i=,be,af,cur;
while(n/i){
be=n/(i*);
af=n-n/i*i;
cur=n/i%; if(cur>) cnt+=(be+)*i;
else if(cur<) cnt+=be*i;
else cnt+=be*i++af;
i*=;
}
return cnt;
}
int main(){
int n;
cin>>n;
int ans=solve(n);
cout<<ans<<endl;
return ;
}

参考:http://www.cnblogs.com/elpsycongroo/p/6917114.html

https://www.dawxy.com/article/51nod1009-%E6%95%B0%E5%AD%971%E7%9A%84%E6%95%B0%E9%87%8F%E6%95%B0%E4%BD%8Ddp/

51Nod 1009 数字1的个数 | 数位DP的更多相关文章

  1. 51nod 1009 - 数字1的数量 - [数位DP][模板的应用以及解释]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1009 基准时间限制:1 秒 空间限制:131072 KB 给 ...

  2. 51nod 1009 数字1的数量 数位dp

    1009 数字1的数量 基准时间限制:1 秒 空间限制:131072 KB   给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数.   例如:n = 12,包含了5个1 ...

  3. 1009 数字1的数量 数位dp

    1级算法题就这样了,前途渺茫啊... 更新一下博客,我刚刚想套用数位dp的模板,发现用那个模板也是可以做到,而且比第二种方法简单很多 第一种方法:我现在用dp[pos][now]来表示第pos位数字为 ...

  4. 51nod 1042 数字0-9的数量 数位dp

    1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 给出一段区间a-b,统计这个区间内0-9出现的次数.   比如 10-1 ...

  5. 51nod 1009 数字1的数量(数位dp模板)

    给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数. 例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5个1.   数位dp的模板题   ...

  6. 51nod 1009 数字1的数量

    1009 数字1的数量   给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数.   例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5 ...

  7. 计算1到N中各个数字出现的次数 --数位DP

    题意:给定一个数n,问从1到n中,0~9这10个数字分别出现了多少次.比如366这个数,3出现了1次,6出现了2次. 题解:<剑指offer>P174:<编程之美>P132 都 ...

  8. ☆ [HDU2089] 不要62「数位DP」

    类型:数位DP 传送门:>Here< 题意:问区间$[n,m]$的数字中,不含4以及62的数字总数 解题思路 数位DP入门题 先考虑一般的暴力做法,整个区间扫一遍,判断每个数是否合法并累计 ...

  9. Codeforces D. Little Elephant and Interval(思维找规律数位dp)

    题目描述: Little Elephant and Interval time limit per test 2 seconds memory limit per test 256 megabytes ...

随机推荐

  1. JavaScript中的事件代理/委托

    事件委托在JS高级程序设计中的定义为"利用事件冒泡,只指定一个事件处理程序,就可以管理某一类型的所有事件" 如何理解上面的这句话呢,在网上,大牛们一般都使用收快递这个例子来解释的, ...

  2. 欢迎来怼——第14次Scrum会议(10/26)

    一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华 小组照片 二.开会信息 时间:2017/10/26  17:00~17:13(总计13min).地点:计 ...

  3. (三)java字符串

    不可变字符串 Java没有字符串类型,而是提供了一个预定义类String. java中的字符串是不可变字符串,因此无法更改某一个字符串变量的内容. 优点:编译器可以让字符串共享.当复制一个字符串时,原 ...

  4. 软工网络15团队作业——Alpha阶段敏捷冲刺 DAY1

    Alpha阶段敏捷冲刺 DAY1 1.各个成员在 Alpha 阶段认领的任务 姓名 在Alpha阶段所认领的任务 陈龙 题目生成类的编写,随机生成合理题目的算法编写 郑佳明 答案计算类的编写,对随机生 ...

  5. zookeeper伪集群安装

    记录下zookeeper伪分布式搭建的过程,假设系统已经配置好了JAVA环境. 1.准备环境 linux服务器一台,下载某个版本的zookeeper压缩包,下载链接:http://apache.cla ...

  6. C/C++打印堆栈信息

    转自:http://www.cnblogs.com/zhurizhe/p/3412369.html 在C/C++程序中打印当前函数调用栈 前几天帮同事跟踪的一个程序莫名退出,没有core dump(当 ...

  7. java 字符串—数字常用处理

    // 判断一个字符串是否都为数字 public boolean isDigit(String strNum) { return strNum.matches("[0-9]{1,}" ...

  8. 在c++中调用exe程序进行操作

    #include <Windows.h> #include <iostream> #include <direct.h> #define picNum 228 us ...

  9. 使用 ECS 实例创建 FTP 站点 linux

    本文只做记载过程和问题,并不详细 官方教程走一遍 https://help.aliyun.com/document_detail/51998.html#h2-linux-ftp-2 值得注意的是步骤二 ...

  10. 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组

    题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...