动态规划:区间DP与环形DP
区间型动态规划的典型例题是石子归并,同时使用记忆化搜索实现区间动归是一种比较容易实现的方式,避免了循环数组实现的时候一些边界的判断
n堆石子排列成一条线,我们可以将相邻的两堆石子进行合并,合并之后需要消耗的代价为这两堆石子的质量之和,问最小的合并代价
状态转移方程很容易给出:
f[i][j]=min(f[i][j],f[i][k]+f[k+][j]+sum[i][j])
因为要计算区间和,考虑前缀和进行预处理
然后我们给出用记忆化搜索形式实现的代码,这里的记忆化搜索形式可以作为后续问题的一个模板
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=;
int n;
int w[maxn];
int g[maxn]; //前缀和
int f[maxn][maxn];
int dfs(int l,int r)
{
if(l==r) return ;
if(f[l][r]!=INF)
return f[l][r];
int tmp=INF;
for(int i=l;i<r;i++)
tmp=min(tmp,dfs(l,i)+dfs(i+,r)+g[r]-g[l-]);
if(tmp<f[l][r])
f[l][r]=tmp;
return f[l][r];
}
int main()
{
cin>>n;
for(int i=;i<=n;i++)
{
cin>>w[i];
g[i]=g[i-]+w[i];
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
f[i][j]=0x3f3f3f3f;
cout<<dfs(,n)<<endl;
return ;
}
这个问题还是比较显然的,我们考虑另一个问题,那就是环形动态规划
其实环形动态规划也是区间型,只不过区间首尾相接
此时使用记忆化搜索实现,其实是不容易的
典型例题是能量项链
先给出状态转移方程:
f[i][j]=max(f[i][j],f[i][k]+f[k][j]+a[i]*a[j]*a[k])
由于每一种区间问题的价值计算方式不一样,可能采用不同的优化形式,本题直接计算即可
然后我们给出使用循环数组方式实现的一个固定的格式,所有的区间型动态规划都可以采取这样的形式来实现
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=;
int n;
int a[maxn];
long long ans=;
int f[maxn][maxn];
void dp()
{
for(int l=;l<=n;l++) //区间长度
for(int i=;i<=n*-l+;i++) //区间起点
{
int j=i+l; //区间终点
for(int k=i+;k<=j-;k++) //区间中任意点
f[i][j]=max(f[i][j],f[i][k]+f[k][j]+a[i]*a[j]*a[k]);
}
for(int i=;i<=n;i++)
if(ans<f[i][i+n])
ans=f[i][i+n];
}
int main()
{
cin>>n;
for(int i=;i<=n;i++)
{
cin>>a[i];
a[n+i]=a[i];
}
dp();
cout<<ans;
return ;
}
分别枚举区间的长度,区间的起点和区间中的任意点就好了
动态规划:区间DP与环形DP的更多相关文章
- 区间DP中的环形DP
vijos1312 链接:www.vijos.org/p/1312 题目分析:经典的环形DP(区间DP) 环形DP,首先解环过程,把数组复制一遍,n个数变成2n个数,从而实现解环 dp[i][j]表示 ...
- 动态规划——区间dp
在利用动态规划解决的一些实际问题当中,一类是基于区间上进行的,总的来说,这种区间dp是属于线性dp的一种.但是我们为了更好的分类,这里仍将其单独拿出进行分析讨论. 让我们结合一个题目开始对区间dp的探 ...
- Hdu OJ 5115 Dire Wolf (2014ACM/ICPC亚洲区北京站) (动态规划-区间dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5115 题目大意:前面有n头狼并列排成一排, 每一头狼都有两个属性--基础攻击力和buff加成, 每一头 ...
- Light OJ 1025 - The Specials Menu(动态规划-区间dp)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1025 题目大意:一串字符, 通过删除其中一些字符, 能够使这串字符变成回文串. ...
- 模板 - 动态规划 - 区间dp
因为昨天在Codeforces上设计的区间dp错了(错过了上紫的机会),觉得很难受.看看学长好像也有学,就不用看别的神犇的了. 区间dp处理环的时候可以把序列延长一倍. 下面是 $O(n^3)$ 的朴 ...
- 洛谷P1063 能量项链(区间DP)(环形DP)
To 洛谷.1063 能量项链 题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的 ...
- [SCOI2007]压缩(动态规划,区间dp,字符串哈希)
[SCOI2007]压缩 状态:设\(dp[i][j]\)表示前i个字符,最后一个\(M\)放置在\(j\)位置之后的最短字串长度. 转移有三类,用刷表法来实现. 第一种是直接往压缩串后面填字符,这样 ...
- P1880 [NOI1995]石子合并[环形DP]
题目来源:洛谷 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将 ...
- DP中环形处理 +(POJ 1179 题解)
DP中环形处理 对于DP中存在环的情况,大致有两种处理的方法: 对于很多的区间DP来说,很常见的方法就是把原来的环从任意两点断开(注意并不是直接删掉这条边),在复制一条一模一样的链在这条链的后方,当做 ...
随机推荐
- IMX6移植htop
top命令查看CPU利用率并不是很方便,因此打算移植htop到imx6上,主要包括以下几个步骤: - 资源下载 htop 下载http://hisham.hm/htop/releases/1.0.1/ ...
- BluetoothAdapter解析
这篇文章将会详细解析BluetoothAdapter的详细api, 包括隐藏方法, 每个常量含义. 一 BluetoothAdapter简介 1.继承关系 该类仅继承了Object类; 2.该类作用 ...
- iOS- UIPickerView餐厅点餐系统
在餐厅里的点餐系统的核心控件就是UIPickerView 今天晚上在整理以前的项目笔记时,特意把UIPickerView单独拿出来,做了一个简陋的点餐道具. 因为没有素材图片,所有大家将就看看吧 0. ...
- 3ds Max学习日记(一)
暑假闲来无事学习一发3ds Max.为啥要学这玩意?貌似可以用这东西三维建模.暑期生产实习选了一个搞vr的导师,貌似他忙得很,无奈只好先自己研究一下啦~ vr神马的还是有点意思的,虽然自己仅仅 ...
- Dubbo分享
1. Dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.简单的说,dubbo就是个服务框架,如果没有分布式的需求,其实是不需 ...
- Spring IOC原理简析
所谓IoC, 就是一个用XML来定义生成对象的模式. 1.现有三个类,Human是接口,Chinese是一个实现类,American是另一个实现类. 2.获取以上对象采用工厂模式的用法如下: 创建一个 ...
- laravel5.6 后台无法退出,必须清楚浏览器缓存才能退出
方法一: 在后台,admin/logincontroleer.php 中 可行 public function logout(Request $request) { Auth::logout(); ...
- php中的<?= ?>替换<?php echo ?>
首先修改PHP.ini文件.如下: 1. 将short_open_tag = Off 改成On 开启以后可以使用PHP的短标签:<? ?> <?= $test ?>来代替 &l ...
- C# 饼形图
原文链接:https://www.cnblogs.com/icyJ/archive/2012/10/08/Chart_Pie.html 需要实现的目标是: 1.将数据绑定到pie的后台数据中,自动生成 ...
- 为什么 MongoDB (索引)使用B-树而 Mysql 使用 B+树
B-树由来 定义:B-树是一类树,包括B-树.B+树.B*树等,是一棵自平衡的搜索树,它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点.B-树是专门为外部存储器设计的,如磁盘,它对 ...