【BZOJ4671】(斯特林反演)
题目
【BZOJ4671】异或图
很有意思的题
做法
直接处理显然很难,我们考虑范围扩大以求容斥或反演这类的帮助
\(f_i\)表示至少有\(i\)个联通块的方案,形如设立\(i\)个联通块轮廓,联通块内连边随意,联通块与联通块之间无连边
\(g_i\)表示恰好有\(i\)个联通块的方案,形如设立\(i\)个联通块轮廓,在保证内部联通的情况下,外部块与块间无连边
显然:$$f_x=\sum\limits_{i=x}^n\begin{Bmatrix}i\x\end{Bmatrix}g_i$$
根据斯特林反演:$$g_x=\sum\limits_{i=x}^n (-1)^{i-x}\begin{bmatrix}i\x\end{bmatrix}f_i$$
故\(g_1=\sum\limits_{i=1}^n (-1)^{i-1}\begin{bmatrix}i\\1\end{bmatrix}f_i\)
而\(\begin{bmatrix}i\\1\end{bmatrix}\)是阶乘形式:\(\begin{bmatrix}i\\1\end{bmatrix}=(i-1)!\)
化简答案为:\(g_1=\sum\limits_{i=1}^n (-1)^{i-1}(i-1)!f_i\)
考虑\(f_i\)如何求出:状压点所属联通块状态,则我们要选择图集使块与块之间无边,考虑枚举每个图的\(S\)表示点与点之间的连边(不属同一联通块),我们压到线性基里去,\(ele\)表示线性基元素,这些元素是不能选择的(相异),故答案为\(2^{N-ele}\)
Code
#include<bits/stdc++.h>
typedef int LL;
const LL maxn=109;
LL N,n;
LL G[maxn][maxn][maxn],a[maxn];
char s[maxn];
long long ans,p[maxn],S,fac[15];
void Dfs(LL x,LL up){
if(x==n+1){
memset(p,0,sizeof(p)); LL ele(0);
for(LL i=1;i<=N;++i){
S=0; LL tot(0);
for(LL j=1;j<=n;++j)
for(LL k=j+1;k<=n;++k)
if(a[k]!=a[j]){
S|=(1ll<<tot)*G[i][j][k];
++tot;
}
for(LL j=0;j<tot;++j){
if(S&(1ll<<j)){
if(!p[j]){
p[j]=S;
++ele;
break;
}else
S^=p[j];
}
}
}
ans+=1ll*((up&1)?1:-1)*fac[up-1]*(1ll<<N-ele);
return;
}
for(LL i=1;i<=up+1;++i){
a[x]=i;
Dfs(x+1,std::max(up,i));
}
}
int main(){
scanf("%d",&N);
for(LL i=1;i<=N;++i){
scanf(" %s",s+1);
LL len(strlen(s+1));
if(!n){
n=1;
for(;n*(n-1)/2!=len;++n);
}
LL now(0);
for(LL j=1;j<=n;++j) for(LL k=j+1;k<=n;++k) G[i][j][k]=s[++now]-'0';
}
fac[0]=fac[1]=1; for(LL i=2;i<=n;++i) fac[i]=fac[i-1]*i;
Dfs(1,0);
printf("%lld",ans);
return 0;
}
【BZOJ4671】(斯特林反演)的更多相关文章
- bzoj4671: 异或图——斯特林反演
[BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...
- 【BZOJ4671】异或图(斯特林反演)
[BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出 ...
- bzoj4671 异或图(斯特林反演,线性基)
bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ ...
- 【bzoj4671】异或图(容斥+斯特林反演+线性基)
传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...
- Square(斯特林反演)
题意 给出一个 \(n × m\) 大小的矩形,每个位置可以填上 \([1, c]\) 中的任意一个数,要求填好后任意两行互不等价且任意两列互不等价,两行或两列等价当且仅当对应位置完全相同,求方案数 ...
- bzoj 4671 异或图——容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...
- bzoj 4671 异或图 —— 容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...
- TCO14 Wildcard CountTables——斯特林反演
不知道咕了多长时间的题... 讲了3遍,还是自己搞懂了.. 暂时没有找到题目链接 题意: n×m的网格,每个格子填[1,x]的数,使得不存在两行两列同构. 先保证一个,行相同. 再容斥掉列. 枚举至多 ...
- 斯特林数&斯特林反演
第一类斯特林数 定义 第一类Stirling数\(s(n,m)\),也可记为\(\begin{bmatrix}n\\m\end{bmatrix}\). 第一类Stirling分为无符号第一类Stirl ...
随机推荐
- ubuntu终端使用代理
sudo http_proxy=http://your_proxy:proxy_port dropbox start -i or sudo https_proxy=http://your_proxy: ...
- 天地币:所用到的 Android Socket 通讯编程技术试验
1.为了开发"天地币"这个Android手机项目,须要用到Socket编程. 2.天地币是一种类似于比特币的虚拟货币. 3.为了赚取CSDN的C币,须要写篇博客. 4.干脆将调试S ...
- 探讨instanceof实现原理,并用两种方法模拟实现 instanceof
在开始之前先了解下js数据类型 js基本数据类型: null undefined number boolean string js引用数据类型: function object array 一说ins ...
- 【Ubuntu】Windows硬盘安装Ubuntu14.04
参考:http://diybbs.zol.com.cn/1/33925_1981.html http://www.cnblogs.com/allenjin/archive/2011/11/26/22 ...
- Java逍遥游记读书笔记<一>
前言 必须先来一句,这是入门级别,高手勿喷~ 写Android的时候总有一些语句不是很理解,其实大部分是Java的内容,所以想系统的学下Java. 这本书——<Java逍遥游记>是在图书馆 ...
- python入门(四):标准输出和文件读写
Python输出 1.表达式语句 str(): 函数返回一个用户易读的表达形式,可以使用 str.format() 函数来格式化输出值. repr(): 产生一个解释器易读的表达形式. 2.print ...
- Amazon Virtual Private Cloud(虚拟专有网络)官方文档通读
一.什么是Amazon VPC? 参考资料: 官网文档 https://docs.aws.amazon.com/zh_cn/AmazonVPC/latest/UserGuide/VPC_Introdu ...
- [Algorithms] Sorting Algorithms (Insertion Sort, Bubble Sort, Merge Sort and Quicksort)
Recently I systematicall review some sorting algorithms, including insertion sort, bubble sort, merg ...
- Oracle实例的恢复、介质恢复( crash recovery)( Media recovery)
实例的恢复( crash recovery) 什么时候发生Oracle实例恢复? shutdown abort; 数据库异常down掉(机器死机,掉电...) 实例恢复的原因是数据有丢掉,使用redo ...
- php and mysql pear的安装
http://www.cnblogs.com/bugY/archive/2012/07/06/2578972.html 什么是PEAR 来自百度百科:PEAR是PHP扩展与应用库(the PHP Ex ...