【BZOJ4671】(斯特林反演)
题目
【BZOJ4671】异或图
很有意思的题
做法
直接处理显然很难,我们考虑范围扩大以求容斥或反演这类的帮助
\(f_i\)表示至少有\(i\)个联通块的方案,形如设立\(i\)个联通块轮廓,联通块内连边随意,联通块与联通块之间无连边
\(g_i\)表示恰好有\(i\)个联通块的方案,形如设立\(i\)个联通块轮廓,在保证内部联通的情况下,外部块与块间无连边
显然:$$f_x=\sum\limits_{i=x}^n\begin{Bmatrix}i\x\end{Bmatrix}g_i$$
根据斯特林反演:$$g_x=\sum\limits_{i=x}^n (-1)^{i-x}\begin{bmatrix}i\x\end{bmatrix}f_i$$
故\(g_1=\sum\limits_{i=1}^n (-1)^{i-1}\begin{bmatrix}i\\1\end{bmatrix}f_i\)
而\(\begin{bmatrix}i\\1\end{bmatrix}\)是阶乘形式:\(\begin{bmatrix}i\\1\end{bmatrix}=(i-1)!\)
化简答案为:\(g_1=\sum\limits_{i=1}^n (-1)^{i-1}(i-1)!f_i\)
考虑\(f_i\)如何求出:状压点所属联通块状态,则我们要选择图集使块与块之间无边,考虑枚举每个图的\(S\)表示点与点之间的连边(不属同一联通块),我们压到线性基里去,\(ele\)表示线性基元素,这些元素是不能选择的(相异),故答案为\(2^{N-ele}\)
Code
#include<bits/stdc++.h>
typedef int LL;
const LL maxn=109;
LL N,n;
LL G[maxn][maxn][maxn],a[maxn];
char s[maxn];
long long ans,p[maxn],S,fac[15];
void Dfs(LL x,LL up){
if(x==n+1){
memset(p,0,sizeof(p)); LL ele(0);
for(LL i=1;i<=N;++i){
S=0; LL tot(0);
for(LL j=1;j<=n;++j)
for(LL k=j+1;k<=n;++k)
if(a[k]!=a[j]){
S|=(1ll<<tot)*G[i][j][k];
++tot;
}
for(LL j=0;j<tot;++j){
if(S&(1ll<<j)){
if(!p[j]){
p[j]=S;
++ele;
break;
}else
S^=p[j];
}
}
}
ans+=1ll*((up&1)?1:-1)*fac[up-1]*(1ll<<N-ele);
return;
}
for(LL i=1;i<=up+1;++i){
a[x]=i;
Dfs(x+1,std::max(up,i));
}
}
int main(){
scanf("%d",&N);
for(LL i=1;i<=N;++i){
scanf(" %s",s+1);
LL len(strlen(s+1));
if(!n){
n=1;
for(;n*(n-1)/2!=len;++n);
}
LL now(0);
for(LL j=1;j<=n;++j) for(LL k=j+1;k<=n;++k) G[i][j][k]=s[++now]-'0';
}
fac[0]=fac[1]=1; for(LL i=2;i<=n;++i) fac[i]=fac[i-1]*i;
Dfs(1,0);
printf("%lld",ans);
return 0;
}
【BZOJ4671】(斯特林反演)的更多相关文章
- bzoj4671: 异或图——斯特林反演
[BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...
- 【BZOJ4671】异或图(斯特林反演)
[BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出 ...
- bzoj4671 异或图(斯特林反演,线性基)
bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ ...
- 【bzoj4671】异或图(容斥+斯特林反演+线性基)
传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...
- Square(斯特林反演)
题意 给出一个 \(n × m\) 大小的矩形,每个位置可以填上 \([1, c]\) 中的任意一个数,要求填好后任意两行互不等价且任意两列互不等价,两行或两列等价当且仅当对应位置完全相同,求方案数 ...
- bzoj 4671 异或图——容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...
- bzoj 4671 异或图 —— 容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...
- TCO14 Wildcard CountTables——斯特林反演
不知道咕了多长时间的题... 讲了3遍,还是自己搞懂了.. 暂时没有找到题目链接 题意: n×m的网格,每个格子填[1,x]的数,使得不存在两行两列同构. 先保证一个,行相同. 再容斥掉列. 枚举至多 ...
- 斯特林数&斯特林反演
第一类斯特林数 定义 第一类Stirling数\(s(n,m)\),也可记为\(\begin{bmatrix}n\\m\end{bmatrix}\). 第一类Stirling分为无符号第一类Stirl ...
随机推荐
- c# 将html添加进剪贴板(带格式)
调用: ClipboardHelper.CopyToClipboard("<h1>hello world</h1>", ""); /// ...
- Json.net操作json
string str="{\"size\":15,\"query\":{\"match\":{\"data.query. ...
- 蓝桥杯 第三届C/C++预赛真题(7) 放棋子(水题)
今有 6 x 6 的棋盘格.其中某些格子已经预先放好了棋子.现在要再放上去一些,使得:每行每列都正好有3颗棋子.我们希望推算出所有可能的放法.下面的代码就实现了这个功能. 初始数组中,“1”表示放有棋 ...
- 用MathType编辑反三角函数的方法
在使用文档写数学类的文章时候,常常会涉及到一些数学公式,由于数学公式中包含了很多的数学符号,如果使用文档自带的公式编辑器往往会发现很多的符号都不全或者不符合自己的要求.这个时候就需要一款专业的数学公式 ...
- springMVC的url-pattern /和/*的区别
总之,关于web.xml的url映射的小知识: <url-pattern>/</url-pattern> 会匹配到/login这样的路径型url,不会匹配到模式为*.jsp这样 ...
- 理解PHP中会话控制
如果以前没有接触过建站或网络编程,只是从头开始学PHP,以及用PHP来建立动态站点,那么会话(SESSION)对于初学者就有点难理解.那么到底什么是会话呢?理解一个概念需要从它产生的背景或问题出发,所 ...
- 巨蟒python全栈开发flask8 MongoDB回顾 前后端分离之H5&pycharm&夜神
1.MongoDB回顾 .启动 mongod - 改变data/db位置: --dbpath D:\data\db mongod --install 安装windows系统服务 mongod --re ...
- sqli_labs第一关
安装 从https://github.com/Audi-1/sqli-labs下载源代码 搭建环境用的是phpstudy 编辑sqli\sql-connections\db-creds.inc文件 修 ...
- attempt to index a nil value (global 'luasql')
require ’socket‘ require ’luasql.mysql' 上述返回结果都是正常 但是执行 env = luasql.mysql(),报错: stdin:1: attempt to ...
- 7.javascript如何调试代码
http://www.cnblogs.com/youring2/archive/2012/08/08/2624093.html