Little Tommy is playing a game. The game is played on a 2D N x N grid. There is an integer in each cell of the grid. The rows and columns are numbered from 1 to N.

At first the board is shown. When the user presses a key, the screen shows three integers I, J, Swhich designates a square (I, J) to (I+S-1, J+S-1) in the grid. The player has to predict the largest integer found in this square. The user will be given points based on the difference between the actual result and the given result.

Tommy doesn't like to lose. So, he made a plan, he will take help of a computer to generate the result. But since he is not a good programmer, he is seeking your help.

Input

Input starts with an integer T (≤ 3), denoting the number of test cases.

The first line of a case is a blank line. The next line contains two integers N (1 ≤ N ≤ 500), Q (0 ≤ Q ≤ 50000). Each of the next N lines will contain N space separated integers forming the grid. All the integers will be between 0 and 105.

Each of the next Q lines will contain a query which is in the form I J S (1 ≤ I, J ≤ N and 1 ≤ I + S, J + S < N and S > 0).

Output

For each test case, print the case number in a single line. Then for each query you have to print the maximum integer found in the square whose top left corner is (I, J) and whose bottom right corner is (I+S-1, J+S-1).

Sample Input

1

4 5

67 1 2 3

8 88 21 1

89 12 0 12

5 5 5 5

1 1 2

1 3 2

3 3 2

1 1 4

2 2 3

Sample Output

Case 1:

88

21

12

89

88

题意:

给定一个n*n(n<=500)的矩阵(即是正方形),每次询问以(x,y)为左上角,边长为s的正方形区域内的最大值。

题解:

用一般的二维RMQ预处理会超时。

因为所给矩阵是为正方形,所以我们每次只用存储正方形即可。

dp[i][j][k]:以(i,j)为左上角,边长为2^k的正方形区域内的最大值,每次倍增只需把大正方形拆成4个小正方形就好了。

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
const int MAX=;
int dp[MAX][MAX][],mm[MAX],val[MAX][MAX];
void initrmq(int n)
{
int lt,lb,rt,rb;
for(int k=;k<=mm[n];k++)
for(int i=;i+(<<k)-<=n;i++)
for(int j=;j+(<<k)-<=n;j++)
if(k==)
dp[i][j][k]=val[i][j];
else
{
lt=dp[i][j][k-]; //左上角
lb=dp[i+(<<k-)][j][k-]; //左下角
rt=dp[i][j+(<<k-)][k-]; //右上角
rb=dp[i+(<<k-)][j+(<<k-)][k-];//右下角
dp[i][j][k]=max(max(lt,lb),max(rt,rb));
}
}
int rmq(int x,int y,int s)
{
if(s==)return val[x][y];
int k=mm[s];
int lt=dp[x][y][k];
int lb=dp[x+s-(<<k)][y][k];
int rt=dp[x][y+s-(<<k)][k];
int rb=dp[x+s-(<<k)][y+s-(<<k)][k];
return max(max(lt,lb),max(rt,rb));
}
int main()
{
int i,j,k,T;
mm[]=-;
for(i=;i<=MAX;i++)
mm[i]=((i&(i-))==)?mm[i-]+:mm[i-];
scanf("%d",&T);
for(int cas=;cas<=T;cas++)
{
int n,q;
scanf("%d%d",&n,&q);
for(i=;i<=n;i++)
for(j=;j<=n;j++)
scanf("%d",&val[i][j]);
initrmq(n);
printf("Case %d:\n",cas);
while(q--)
{
int x,y,s;
scanf("%d%d%d",&x,&y,&s);
printf("%d\n",rmq(x,y,s));
}
}
return ;
}

【LightOJ 1081】Square Queries(二维RMQ降维)的更多相关文章

  1. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  2. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

  3. poj2019 二维RMQ裸题

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:8623   Accepted: 4100 Descrip ...

  4. hdu2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. 【HDOJ 2888】Check Corners(裸二维RMQ)

    Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...

  7. hdu 2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  8. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  9. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

随机推荐

  1. Excellent JD

    Job description About the role We are looking for a talented engineer who has excellent cloud skills ...

  2. Python爬虫教程-20-xml 简介

    本篇简单介绍 xml 在python爬虫方面的使用,想要具体学习 xml 可以到 w3school 查看 xml 文档 xml 文档链接:http://www.w3school.com.cn/xmld ...

  3. Genymotion模拟器拖入文件报An error occured while deploying the file的错误

    今天需要用到资源文件,需要将资源文件拖拽到sd卡中,但老是出现这个问题: 资源文件拖不进去genymotion.查看了sd的DownLoad目录,确实没有成功拖拽进去. 遇到这种问题的,我按下面的思路 ...

  4. Java Collections Framework知识结构目录

    The core collection interfaces are the foundation of the Java Collections Framework. The Java Collec ...

  5. python链接安卓 跳一跳

    借鉴:  一百行代码实现微信跳一跳 之前需要安装adb 开启服务: adb nodaemon server 显示设备: adb devices 代码: import math import os im ...

  6. 如何一次性下载某个类库依赖的所有jar包"

    ** 经常碰到这种事情: ** 在一些非maven工程中(由于某种原因这种工程还是手工添加依赖的),需要用到某个新的类库(假设这个类库发布在maven库中),而这个类库又间接依赖很多其他类库,如果依赖 ...

  7. AJAX原生JavaScript写法

    GET方式 //创建XMLHttpRequest对象,为考虑兼容性问题,老版本的 Internet Explorer (IE5 和 IE6)使用 ActiveX 对象 var ajax = windo ...

  8. VMWARE里安装时出现'SMBus Host Controller not enabled'

    在虚拟机上运行Linux内核版本为4.7或以上的系统都在安装过程中或在启动时会因为加载intel_powerclamp驱动而导致崩溃.解决办法:1.在启动Ubuntu的时候按住左Shift键:2.Ub ...

  9. QT容器map的插入,修改,遍历

    除了map,QT的容器还有hash,以及迭代器等,这里写的是map #include "mainwindow.h" #include <QApplication> #i ...

  10. 哈夫曼树算法及C++实现

    一.相关概念 1.叶子结点的权值(weight)是对叶子结点赋予的一个有意义的数值量. 2.设二叉树有n个带权值的叶子结点,从根节点到各个叶子结点的路径长度与相应叶子结点权值的乘积之和叫做二叉树的带权 ...