Little Tommy is playing a game. The game is played on a 2D N x N grid. There is an integer in each cell of the grid. The rows and columns are numbered from 1 to N.

At first the board is shown. When the user presses a key, the screen shows three integers I, J, Swhich designates a square (I, J) to (I+S-1, J+S-1) in the grid. The player has to predict the largest integer found in this square. The user will be given points based on the difference between the actual result and the given result.

Tommy doesn't like to lose. So, he made a plan, he will take help of a computer to generate the result. But since he is not a good programmer, he is seeking your help.

Input

Input starts with an integer T (≤ 3), denoting the number of test cases.

The first line of a case is a blank line. The next line contains two integers N (1 ≤ N ≤ 500), Q (0 ≤ Q ≤ 50000). Each of the next N lines will contain N space separated integers forming the grid. All the integers will be between 0 and 105.

Each of the next Q lines will contain a query which is in the form I J S (1 ≤ I, J ≤ N and 1 ≤ I + S, J + S < N and S > 0).

Output

For each test case, print the case number in a single line. Then for each query you have to print the maximum integer found in the square whose top left corner is (I, J) and whose bottom right corner is (I+S-1, J+S-1).

Sample Input

1

4 5

67 1 2 3

8 88 21 1

89 12 0 12

5 5 5 5

1 1 2

1 3 2

3 3 2

1 1 4

2 2 3

Sample Output

Case 1:

88

21

12

89

88

题意:

给定一个n*n(n<=500)的矩阵(即是正方形),每次询问以(x,y)为左上角,边长为s的正方形区域内的最大值。

题解:

用一般的二维RMQ预处理会超时。

因为所给矩阵是为正方形,所以我们每次只用存储正方形即可。

dp[i][j][k]:以(i,j)为左上角,边长为2^k的正方形区域内的最大值,每次倍增只需把大正方形拆成4个小正方形就好了。

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
const int MAX=;
int dp[MAX][MAX][],mm[MAX],val[MAX][MAX];
void initrmq(int n)
{
int lt,lb,rt,rb;
for(int k=;k<=mm[n];k++)
for(int i=;i+(<<k)-<=n;i++)
for(int j=;j+(<<k)-<=n;j++)
if(k==)
dp[i][j][k]=val[i][j];
else
{
lt=dp[i][j][k-]; //左上角
lb=dp[i+(<<k-)][j][k-]; //左下角
rt=dp[i][j+(<<k-)][k-]; //右上角
rb=dp[i+(<<k-)][j+(<<k-)][k-];//右下角
dp[i][j][k]=max(max(lt,lb),max(rt,rb));
}
}
int rmq(int x,int y,int s)
{
if(s==)return val[x][y];
int k=mm[s];
int lt=dp[x][y][k];
int lb=dp[x+s-(<<k)][y][k];
int rt=dp[x][y+s-(<<k)][k];
int rb=dp[x+s-(<<k)][y+s-(<<k)][k];
return max(max(lt,lb),max(rt,rb));
}
int main()
{
int i,j,k,T;
mm[]=-;
for(i=;i<=MAX;i++)
mm[i]=((i&(i-))==)?mm[i-]+:mm[i-];
scanf("%d",&T);
for(int cas=;cas<=T;cas++)
{
int n,q;
scanf("%d%d",&n,&q);
for(i=;i<=n;i++)
for(j=;j<=n;j++)
scanf("%d",&val[i][j]);
initrmq(n);
printf("Case %d:\n",cas);
while(q--)
{
int x,y,s;
scanf("%d%d%d",&x,&y,&s);
printf("%d\n",rmq(x,y,s));
}
}
return ;
}

【LightOJ 1081】Square Queries(二维RMQ降维)的更多相关文章

  1. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  2. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

  3. poj2019 二维RMQ裸题

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:8623   Accepted: 4100 Descrip ...

  4. hdu2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. 【HDOJ 2888】Check Corners(裸二维RMQ)

    Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...

  7. hdu 2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  8. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  9. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

随机推荐

  1. Echarts按需引入后没有显示图例问题

    因为Echarts官网的例子都是引入整个Echarts.js.如果使用按需引入对应模块就要记得引入legend模块,才能显示出图例. 例如这样: require("echarts/lib/c ...

  2. 学习CSS制作菜单列表,举一反三

    1.普通的二三级菜单 <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type&qu ...

  3. 001Java锁之synchronized

    01.synchronized & Lock synchronized锁同步 软件层面依赖JVM Lock锁同步 硬件层面依赖cpu指令 02.synchronized作用域 方法:锁住对象实 ...

  4. 【Jmeter】参数Parameters和Body Data

    在做接口并发测试的时候,才发现Jmeter中的Parameters和Body Data两种参数格式并不是简单的一个是xx=xx,另外一个是json格式的参数 先看一个接口 [post] /api/xx ...

  5. 实验三:klee的执行重现机制(示例分析)

    结论性内容: (1)如果是在程序中使用klee_make_symbolic,则可以使用下列脚本进行重现. export LD_LIBRARY_PATH=/home/klee/xiaojiework/k ...

  6. 【OBJC】数字转中文大写

    博客园都不知道怎么外链图片…… - (void)numToString:(double)num{ ; NSMutableString *szChMoney = [[NSMutableString al ...

  7. eclipse 出现 jar包找不到 问题记录

    同事在下载maven私服项目的时候,自动更新失败.maven 一直提示 parent 更新失败但是其他的项目都是正常的,这就奇怪了. 最后 仔细查询后,发现是  同事在下载项目时候,项目是分clien ...

  8. angular 动态组件类型

    出处:https://github.com/Penggggg/angular-component-practices 组件类型1:纯函数功能,而没有视图部分,即Factory(类似于$http) pr ...

  9. cmd:相关命令和笔记

    (1)查看git版本:git --version (2)

  10. Zabbix3.4服务器的搭建--CentOS7

    本教程是目前最简单的Zabbix搭建教程.因为不是编译方式,直接用官方的分发包(rpm)安装. 1.前期准备 安装CentOS 7.4系统后.开启网络功能,其他东西均可不装.切记一定不要配置环境.还有 ...