In the previous post I go through basic 1-layer Neural Network with sigmoid activation function, including

  • How to get sigmoid function from a binary classification problem?

  • NN is still an optimization problem, so what's the target to optimize? - cost function

  • How does model learn?- gradient descent

  • Work flow of NN? - Backward/Forward propagation

Now let's get deeper to 2-layers Neural Network, from where you can have as many hidden layers as you want. Also let's try to vectorize everything.

1. The architecture of 2-layers shallow NN

Below is the architecture of 2-layers NN, including input layer, one hidden layer and one output layer. The input layer is not counted.

(1) Forward propagation

In each neuron, there are 2 activities going on after take in the input from previous hidden layer:

  1. a linear transformation of the input
  2. a non-linear activation function applied after

Then the ouput will pass to the next hidden layer as input.

From input layer to output layer, do above computation layer by layer is forward propagation. It tries to map each input \(x \in R^n\) to $ y$.

For each training sample, the forward propagation is defined as following:

\(x \in R^{n*1}\) denotes the input data. In the picture n = 4.

\((w^{[1]} \in R^{k*n},b^{[1]}\in R^{k*1})\) is the parameter in the first hidden layer. Here k = 3.

\((w^{[2]} \in R^{1*k},b^{[2]}\in R^{1*1})\) is the parameter in the output layer. The output is a binary variable with 1 dimension.

\((z^{[1]} \in R^{k*1},z^{[2]}\in R^{1*1})\) is the intermediate output after linear transformation in the hidden and output layer.

\((a^{[1]} \in R^{k*1},a^{[2]}\in R^{1*1})\) is the output from each layer. To make it more generalize we can use \(a^{[0]} \in R^n\) to denote \(x\)

*Here we use \(g(x)\) as activation function for hidden layer, and sigmoid \(\sigma(x)\) for output layer. we will discuss what are the available activation functions \(g(x)\) out there in the following post. What happens in forward propagation is following:

\([1]\) \(z^{[1]} = {w^{[1]}} a^{[0]} + b^{[1]}\)
\([2]\) \(a^{[1]} = g((z^{[1]} ) )\)
\([3]\) \(z^{[2]} = {w^{[2]}} a^{[1]} + b^{[2]}\)
\([4]\) \(a^{[2]} = \sigma(z^{[2]} )\)

(2) Backward propagation

After forward propagation, for each training sample \(x\) is done ,we will have a prediction \(\hat{y}\). Comparing \(\hat{y}\) with \(y\), we then use the error between prediction and real value to update the parameter via gradient descent.

Backward propagation is passing the gradient descent from output layer back to input layer using chain rule like below. The deduction is in the previous post.

\[ \frac{\partial L(a,y)}{\partial w} =
\frac{\partial L(a,y)}{\partial a} \cdot
\frac{\partial a}{\partial z} \cdot
\frac{\partial z}{\partial w}\]

\([4]\) \(dz^{[2]} = a^{[2]} - y\)
\([3]\) \(dw^{[2]} = dz^{[2]} a^{[1]T}\)
\([3]\) \(db^{[2]} = dz^{[2]}\)
\([2]\) \(dz^{[1]} = da^{[1]} * g^{[1]'}(z[1]) = w^{[2]T} dz^{[2]}* g^{[1]'}(z[1])\)
\([1]\) \(dw^{[1]} = dz^{[1]} a^{[0]T}\)
\([1]\) \(db^{[1]} = dz^{[1]}\)

2. Vectorize and Generalize your NN

Let's derive the vectorize representation of the above forward and backward propagation. The usage of vector is to speed up the computation. We will talk about this again in batch gradient descent.

\(w^{[1]},b^{[1]}, w^{[2]}, b^{[2]}\) stays the same. Generally \(w^{[i]}\) has dimension \((h_{i},h_{i-1})\) and \(b^{[i]}\) has dimension \((h_{i},1)\)

\(Z^{[1]} \in R^{k*m}, Z^{[2]} \in R^{1*m}, A^{[0]} \in R^{n*m}, A^{[1]} \in R^{k*m}, A^{[2]}\in R^{1*m}\) where \(A^{[0]}\)is the input vector, each column is one training sample.

(1) Forward propogation

Follow above logic, vectorize representation is below:

\([1]\) \(Z^{[1]} = {w^{[1]}} A^{[0]} + b^{[1]}\)
\([2]\) \(A^{[1]} = g((Z^{[1]} ) )\)
\([3]\) \(Z^{[2]} = {w^{[2]}} A^{[1]} + b^{[2]}\)
\([4]\) \(A^{[2]} = \sigma(Z^{[2]} )\)

Have you noticed that the dimension above is not a exact matched?
\({w^{[1]}} A^{[0]}\) has dimension \((k,m)\), \(b^{[1]}\) has dimension \((k,1)\).
However Python will take care of this for you with Broadcasting. Basically it will replicate the lower dimension to the higher dimension. Here \(b^{[1]}\) will be replicated m times to become \((k,m)\)

(1) Backward propogation

Same as above, backward propogation will be:
\([4]\) \(dZ^{[2]} = A^{[2]} - Y\)
\([3]\) \(dw^{[2]} =\frac{1}{m} dZ^{[2]} A^{[1]T}\)
\([3]\) \(db^{[2]} = \frac{1}{m} \sum{dZ^{[2]}}\)
\([2]\) \(dZ^{[1]} = dA^{[1]} * g^{[1]'}(z[1]) = w^{[2]T} dZ^{[2]}* g^{[1]'}(z[1])\)
\([1]\) \(dw^{[1]} = \frac{1}{m} dZ^{[1]} A^{[0]T}\)
\([1]\) \(db^{[1]} = \frac{1}{m} \sum{dZ^{[1]} }\)

In the next post, I will talk about some other details in NN, like hyper parameter, activation function.

To be continued.


Reference

  1. Ian Goodfellow, Yoshua Bengio, Aaron Conrville, "Deep Learning"
  2. Deeplearning.ai https://www.deeplearning.ai/

DeepLearning - Forard & Backward Propogation的更多相关文章

  1. Deeplearning - Overview of Convolution Neural Network

    Finally pass all the Deeplearning.ai courses in March! I highly recommend it! If you already know th ...

  2. DeepLearning - Regularization

    I have finished the first course in the DeepLearnin.ai series. The assignment is relatively easy, bu ...

  3. Coursera机器学习+deeplearning.ai+斯坦福CS231n

    日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Wee ...

  4. DeepLearning - Overview of Sequence model

    I have had a hard time trying to understand recurrent model. Compared to Ng's deep learning course, ...

  5. back propogation 的线代描述

    参考资料: 算法部分: standfor, ufldl  : http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial 一文弄懂BP:https: ...

  6. DeepLearning Intro - sigmoid and shallow NN

    This is a series of Machine Learning summary note. I will combine the deep learning book with the de ...

  7. 用纯Python实现循环神经网络RNN向前传播过程(吴恩达DeepLearning.ai作业)

    Google TensorFlow程序员点赞的文章!   前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 ...

  8. 吴恩达DeepLearning.ai的Sequence model作业Dinosaurus Island

    目录 1 问题设置 1.1 数据集和预处理 1.2 概览整个模型 2. 创建模型模块 2.1 在优化循环中梯度裁剪 2.2 采样 3. 构建语言模型 3.1 梯度下降 3.2 训练模型 4. 结论   ...

  9. Sql Server 聚集索引扫描 Scan Direction的两种方式------FORWARD 和 BACKWARD

    最近发现一个分页查询存储过程中的的一个SQL语句,当聚集索引列的排序方式不同的时候,效率差别达到数十倍,让我感到非常吃惊 由此引发出来分页查询的情况下对大表做Clustered Scan的时候, 不同 ...

随机推荐

  1. SQL 一

    1.所有表都必须在模式中.2.SYS模式不是默认模式3.虽然有概念用户PUBLIC,但它根本没有模式.4.索引有自己的名称空间,存储过程.同义词.表和视图都在同一名称空间里.5.堆是可变长度行的表,这 ...

  2. HTML表格属性及简单实例

    这里主要总结记录下表格的一些属性和简单的样式,方便以后不时之需. 1.<table> 用来定义HTML的表格,具有本地属性 border 表示边框,border属性的值必须为1或空字符串( ...

  3. HTML5新特性之离线缓存技术

    一.离线缓存的起因. HTML5之前的网页,都是无连接,必须联网才能访问,这其实也是web的特色,这其实对于PC是时代问题并不大,但到了移动互联网时代, 设备终端位置不再固定,依赖无线信号,网络的可靠 ...

  4. Linux下Git远程仓库的使用详解

    Git远程仓库Github 提示:Github网站作为远程代码仓库时的操作和本地代码仓库一样的,只是仓库位置不同而已! 准备Git源代码仓库 https://github.com/ 准备经理的文件 D ...

  5. excel批量转换为CSV格式,xls批量导出csv格式

    工具/原料   excel 2013 地址链接:http://pan.baidu.com/s/1c1ZABlu 密码:d3rc 方法/步骤     首选我们把需要导出为CVS的Excel文件整理集中到 ...

  6. 微信小程序调用api接口

    请求的第三方微信url大概有3种 1)$url = "https://api.weixin.qq.com/sns/oauth2/access_token?appid=$appid&s ...

  7. Linux通过Shell脚本命令修改密码不需要交互

    交互方式修改密码 1. ssh 远程到主机: 2. 切换到root账号: [一般都是切换到root进行密码修改,如果普通用户修改自己的密码,要输入原密码,然后新密码要满足复杂度才OK]: 3. pas ...

  8. Echarts+百度地图

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Mysql慢查询开启和查看 ,存储过程批量插入1000万条记录进行慢查询测试

    首先登陆进入Mysql命令行  执行sql      show variables like 'slow_query%';  结果为OFF 说明还未开启慢查询 执行sql     show varia ...

  10. windows下nginx的安装

    一. 下载 http://nginx.org/    (下载后解压) 二. 修改配置文件 nginx配置文件在 nginx-1.8.0\conf\nginx.conf http { gzip on; ...