小马哥课堂-统计学-z分数
Standard score(z-分数)
The standard score is the signed number of standard deviations by which the value of an observation or data point differs from the mean value of what is being observed or measured.Observed values above the mean have positive standard scores, while values below the mean have negative standard scores. The standard score is a dimensionless quantity obtained by subtracting the population mean from an individual raw score and then dividing the difference by the population standard deviation. This conversion process is called standardizing or normalizing .
Standard scores are also called z-values, z-scores, normal scores, and standardized variables. They are most frequently used to compare an observation to a standard normal deviate, though they can be defined without assumptions of normality.
一个样本值与总体平均数的差再除以标准差的过程。衡量一个数距离平均数有多少个标准差。
If the population mean and population standard deviation are known, the standard score of a raw score x is calculated as
\[z=\frac{x- \mu }{\sigma}\]
\(\mu\) is the mean of the population
\(\sigma\) is the standard deviation of the population
The absolute value of z represents the distance between the raw score and the population mean in units of the standard deviation. z is negative when the raw score is below the mean, positive when above.
Calculating z using this formula requires the population mean and the population standard deviation, not the sample mean or sample deviation. But knowing the true mean and standard deviation of a population is often unrealistic except in cases such as standardized testing, where the entire population is measured.
When the population mean and the population standard deviation are unknown, the standard score may be calculated using the sample mean and sample standard deviation as estimates of the population values.
In these cases, the z score is
\[z=\frac{x-\overline x}{S}\]
where: \(\overline x\) is the mean of the sample,S is the standard deviation of the sample.
z-table
z | +0.00 | +0.01 | +0.02 | +0.03 | +0.04 | +0.05 | +0.06 | +0.07 | +0.08 | +0.09 |
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.50000 | 0.50399 | 0.50798 | 0.51197 | 0.51595 | 0.51994 | 0.52392 | 0.52790 | 0.53188 | 0.53586 |
0.1 | 0.53983 | 0.54380 | 0.54776 | 0.55172 | 0.55567 | 0.55966 | 0.56360 | 0.56749 | 0.57142 | 0.57535 |
0.2 | 0.57926 | 0.58317 | 0.58706 | 0.59095 | 0.59483 | 0.59871 | 0.60257 | 0.60642 | 0.61026 | 0.61409 |
0.3 | 0.61791 | 0.62172 | 0.62552 | 0.62930 | 0.63307 | 0.63683 | 0.64058 | 0.64431 | 0.64803 | 0.65173 |
0.4 | 0.65542 | 0.65910 | 0.66276 | 0.66640 | 0.67003 | 0.67364 | 0.67724 | 0.68082 | 0.68439 | 0.68793 |
0.5 | 0.69146 | 0.69497 | 0.69847 | 0.70194 | 0.70540 | 0.70884 | 0.71226 | 0.71566 | 0.71904 | 0.72240 |
0.6 | 0.72575 | 0.72907 | 0.73237 | 0.73565 | 0.73891 | 0.74215 | 0.74537 | 0.74857 | 0.75175 | 0.75490 |
0.7 | 0.75804 | 0.76115 | 0.76424 | 0.76730 | 0.77035 | 0.77337 | 0.77637 | 0.77935 | 0.78230 | 0.78524 |
0.8 | 0.78814 | 0.79103 | 0.79389 | 0.79673 | 0.79955 | 0.80234 | 0.80511 | 0.80785 | 0.81057 | 0.81327 |
0.9 | 0.81594 | 0.81859 | 0.82121 | 0.82381 | 0.82639 | 0.82894 | 0.83147 | 0.83398 | 0.83646 | 0.83891 |
1.0 | 0.84134 | 0.84375 | 0.84614 | 0.84849 | 0.85083 | 0.85314 | 0.85543 | 0.85769 | 0.85993 | 0.86214 |
1.1 | 0.86433 | 0.86650 | 0.86864 | 0.87076 | 0.87286 | 0.87493 | 0.87698 | 0.87900 | 0.88100 | 0.88298 |
1.2 | 0.88493 | 0.88686 | 0.88877 | 0.89065 | 0.89251 | 0.89435 | 0.89617 | 0.89796 | 0.89973 | 0.90147 |
1.3 | 0.90320 | 0.90490 | 0.90658 | 0.90824 | 0.90988 | 0.91149 | 0.91308 | 0.91466 | 0.91621 | 0.91774 |
1.4 | 0.91924 | 0.92073 | 0.92220 | 0.92364 | 0.92507 | 0.92647 | 0.92785 | 0.92922 | 0.93056 | 0.93189 |
1.5 | 0.93319 | 0.93448 | 0.93574 | 0.93699 | 0.93822 | 0.93943 | 0.94062 | 0.94179 | 0.94295 | 0.94408 |
1.6 | 0.94520 | 0.94630 | 0.94738 | 0.94845 | 0.94950 | 0.95053 | 0.95154 | 0.95254 | 0.95352 | 0.95449 |
1.7 | 0.95543 | 0.95637 | 0.95728 | 0.95818 | 0.95907 | 0.95994 | 0.96080 | 0.96164 | 0.96246 | 0.96327 |
1.8 | 0.96407 | 0.96485 | 0.96562 | 0.96638 | 0.96712 | 0.96784 | 0.96856 | 0.96926 | 0.96995 | 0.97062 |
1.9 | 0.97128 | 0.97193 | 0.97257 | 0.97320 | 0.97381 | 0.97441 | 0.97500 | 0.97558 | 0.97615 | 0.97670 |
2.0 | 0.97725 | 0.97778 | 0.97831 | 0.97882 | 0.97932 | 0.97982 | 0.98030 | 0.98077 | 0.98124 | 0.98169 |
2.1 | 0.98214 | 0.98257 | 0.98300 | 0.98341 | 0.98382 | 0.98422 | 0.98461 | 0.98500 | 0.98537 | 0.98574 |
2.2 | 0.98610 | 0.98645 | 0.98679 | 0.98713 | 0.98745 | 0.98778 | 0.98809 | 0.98840 | 0.98870 | 0.98899 |
2.3 | 0.98928 | 0.98956 | 0.98983 | 0.99010 | 0.99036 | 0.99061 | 0.99086 | 0.99111 | 0.99134 | 0.99158 |
2.4 | 0.99180 | 0.99202 | 0.99224 | 0.99245 | 0.99266 | 0.99286 | 0.99305 | 0.99324 | 0.99343 | 0.99361 |
2.5 | 0.99379 | 0.99396 | 0.99413 | 0.99430 | 0.99446 | 0.99461 | 0.99477 | 0.99492 | 0.99506 | 0.99520 |
2.6 | 0.99534 | 0.99547 | 0.99560 | 0.99573 | 0.99585 | 0.99598 | 0.99609 | 0.99621 | 0.99632 | 0.99643 |
2.7 | 0.99653 | 0.99664 | 0.99674 | 0.99683 | 0.99693 | 0.99702 | 0.99711 | 0.99720 | 0.99728 | 0.99736 |
2.8 | 0.99744 | 0.99752 | 0.99760 | 0.99767 | 0.99774 | 0.99781 | 0.99788 | 0.99795 | 0.99801 | 0.99807 |
2.9 | 0.99813 | 0.99819 | 0.99825 | 0.99831 | 0.99836 | 0.99841 | 0.99846 | 0.99851 | 0.99856 | 0.99861 |
3.0 | 0.99865 | 0.99869 | 0.99874 | 0.99878 | 0.99882 | 0.99886 | 0.99889 | 0.99893 | 0.99896 | 0.99900 |
3.1 | 0.99903 | 0.99906 | 0.99910 | 0.99913 | 0.99916 | 0.99918 | 0.99921 | 0.99924 | 0.99926 | 0.99929 |
3.2 | 0.99931 | 0.99934 | 0.99936 | 0.99938 | 0.99940 | 0.99942 | 0.99944 | 0.99946 | 0.99948 | 0.99950 |
3.3 | 0.99952 | 0.99953 | 0.99955 | 0.99957 | 0.99958 | 0.99960 | 0.99961 | 0.99962 | 0.99964 | 0.99965 |
3.4 | 0.99966 | 0.99968 | 0.99969 | 0.99970 | 0.99971 | 0.99972 | 0.99973 | 0.99974 | 0.99975 | 0.99976 |
3.5 | 0.99977 | 0.99978 | 0.99978 | 0.99979 | 0.99980 | 0.99981 | 0.99981 | 0.99982 | 0.99983 | 0.99983 |
3.6 | 0.99984 | 0.99985 | 0.99985 | 0.99986 | 0.99986 | 0.99987 | 0.99987 | 0.99988 | 0.99988 | 0.99989 |
3.7 | 0.99989 | 0.99990 | 0.99990 | 0.99990 | 0.99991 | 0.99991 | 0.99992 | 0.99992 | 0.99992 | 0.99992 |
3.8 | 0.99993 | 0.99993 | 0.99993 | 0.99994 | 0.99994 | 0.99994 | 0.99994 | 0.99995 | 0.99995 | 0.99995 |
3.9 | 0.99995 | 0.99995 | 0.99996 | 0.99996 | 0.99996 | 0.99996 | 0.99996 | 0.99996 | 0.99997 | 0.99997 |
4.0 | 0.99997 | 0.99997 | 0.99997 | 0.99997 | 0.99997 | 0.99997 | 0.99998 | 0.99998 | 0.99998 | 0.99998 |
示例:
A professor's exam scores are approximately distributed normally with mean 80 and standard deviation 5. Only a cumulative from mean table is available.
\[P(X \le 82)=P(Z \le \frac{82-80}{5}) = P(Z \le 0.40)=0.65542\]
小马哥课堂-统计学-z分数的更多相关文章
- 小马哥课堂-统计学-t分布
T distribution 定义 在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计 呈正态分布且方差未知的总体的均值.如果总体方差已知(例如在样 ...
- 小马哥课堂-统计学-t分布(2)
t分布,随着自由度的增加,而逐渐接近于正态分布 #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################### ...
- z分数
一.公式 计算过程为样本x的值与样本总体平均值的差,再除以标准差. 当以标准差为单位,要统计样本与均值偏离了多少值时,就用此公式.
- 地理信息系统 - ArcGIS - 高/低聚类分析工具(High/Low Clustering ---Getis-Ord General G)
前段时间在学习空间统计相关的知识,于是把ArcGIS里Spatial Statistics工具箱里的工具好好研究了一遍,同时也整理了一些笔记上传分享.这一篇先聊一些基础概念,工具介绍篇随后上传. 空间 ...
- ML 07、机器学习中的距离度量
机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时, ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- ML二:NNSearch数据结构--二叉树
wiki百科:http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91%E5%AD%A6%E4%B9%A0 opencv学习笔记--二杈决策树: ...
- Genome Sequencing of MuseumSpecimens Reveals Rapid Changes in the Genetic Composition of Honey Bees in California
文章地址:https://academic.oup.com/gbe/article/10/2/458/4810442#supplementary-data Abstract 在自然生态系统和管理生态系 ...
- Python相关分析—一个金融场景的案例实操
哲学告诉我们:世界是一个普遍联系的有机整体,现象之间客观上存在着某种有机联系,一种现象的发展变化,必然受与之关联的其他现象发展变化的制约与影响,在统计学中,这种依存关系可以分为相关关系和回归函数关系两 ...
随机推荐
- Linux 下的图形库介绍
在进行Linux下的图形系统编程时,我们常常会遇到以下这些概念: Framebuffer, X11, SDL,DFB, miniGUI, OpenGL,QT, GTK,KDE, GNOME等等. 一. ...
- go语言基础之匿名变量和多重赋
1.匿名变量 package main //必须有一个main包 import "fmt" func test() (a, b, c int) { return 1, 2, 3 } ...
- LightOJ - 1265 Island of Survival 期望
题目大意:有一个生存游戏,里面t仅仅老虎,d仅仅鹿,另一个人,每天都要有两个生物碰面,如今有下面规则 1.老虎和老虎碰面.两仅仅老虎就会同归于尽 2.老虎和人碰面或者和鹿碰面,老虎都会吃掉对方 3.人 ...
- 强大实用的jQuery幻灯片插件Owl Carousel
演 示 下 载 简介 Owl Carousel 是一个强大.实用但小巧的 jQuery 幻灯片插件,它具有一下特点: 兼容所有浏览器 支持响应式 支持 CSS3 过度 支持触摸事件 支持 JSON 及 ...
- 《深入理解Java虚拟机》笔记6
class文件由无符号数和表两种类型数据构成.表其实相当于一种结构体,内部又嵌套无符号数或者表. 用u1,u2,u4,u8分别代表一个字节,两个字节,四个字节,八个字节的无符号数. 如图中所示,cla ...
- c#跟objective-c语言特性的对比
拿c#语言跟objective-c做个对比,记录下自己认为是差不多的东西. 学过objc的人相信对category这个东西肯定不陌生,它可以让我们在没有源码的基础上对原先的类添加额外的一些方法,写到这 ...
- Node.js mm131图片批量下载爬虫1.01 增加断点续传功能
这里的断点续传不是文件下载时的断点续传,而是指在爬行页面时有时会遇到各种网络中断而从中断前的页面及其数据继续爬行的过程,这个过程和断点续传原理上相似故以此命名.我的具体做法是:在下载出现故障或是图片已 ...
- Telnet服务配置
telnet:远程连接,使用未加密的用户/密码组进行验证,由xinetd服务管理.配置文件为/etc/xinetd.d/telnet Telnet服务的配置步骤如下: 一.安装telnet软件包 #r ...
- tomcat中server.xml配置详解(转载)(二)
转载自:https://www.cnblogs.com/starhu/p/5599773.html 一:<Connector>元素 由Connector接口定义.<Connector ...
- 怎样推断多个字段组成的keyword在另外一张表中是否存在
怎样推断多个字段组成的keyword在另外一张表中是否存在 老帅(20141107) 1.首先推断一个keyword在另外一张表中是否存在非常easy! SELECT * FROM a WHERE a ...