HDU3949 XOR

Problem Description

XOR is a kind of bit operator, we define that as follow: for two binary base number A and B, let C=A XOR B, then for each bit of C, we can get its value by check the digit of corresponding position in A and B. And for each digit, 1 XOR 1 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 0 XOR 0 = 0. And we simply write this operator as ^, like 3 ^ 1 = 2,4 ^ 3 = 7. XOR is an amazing operator and this is a question about XOR. We can choose several numbers and do XOR operatorion to them one by one, then we get another number. For example, if we choose 2,3 and 4, we can get 234=5. Now, you are given N numbers, and you can choose some of them(even a single number) to do XOR on them, and you can get many different numbers. Now I want you tell me which number is the K-th smallest number among them.

Input

First line of the input is a single integer T(T<=30), indicates there are T test cases.

For each test case, the first line is an integer N(1<=N<=10000), the number of numbers below. The second line contains N integers (each number is between 1 and 10^18). The third line is a number Q(1<=Q<=10000), the number of queries. The fourth line contains Q numbers(each number is between 1 and 10^18) K1,K2,......KQ.

Output

For each test case,first output Case #C: in a single line,C means the number of the test case which is from 1 to T. Then for each query, you should output a single line contains the Ki-th smallest number in them, if there are less than Ki different numbers, output -1.

Sample Input

2

2

1 2

4

1 2 3 4

3

1 2 3

5

1 2 3 4 5

Sample Output

Case #1:

1

2

3

-1

Case #2:

0

1

2

3

-1

Hint

If you choose a single number, the result you get is the number you choose.

Using long long instead of int because of the result may exceed 2^31-1.

Solution

简述一下题意:n个权值,m个询问,每次一个k,表示询问n个元素可以异或出来的所有值中的第k小值

线性基求k小值...

我们需要改进一下线性基,将每一位都独立,如果j<i,且p[i]的第j位是1,就把p[i]^p[j].这样,对于二进制的每一位i.只有p[i]这一位是1,其他的都是0。

我们查询的时候,将k进行二进制拆分,如果第i位是1,就异或上线性基中第i个元素(注意不是第i位,俄日是从小到大第i个),最终得出的答案就是k小值,怎么证?我也不会....

il void rebuild() {//重构函数
for(rg lol i=63;i>=0;i--)
for(rg lol j=i-1;j>=0;j--)
if(arr[i]>>j&1) arr[i]^=arr[j];
for(int i=0;i<=63;i++) if(arr[i]) arr[cnt++]=arr[i];
}

然后,要注意一个点,因为线性基的性质:线性基没有异或和为0的子集

所以默认的最小值是没有0的,但是如果有一个值插入失败了,说明这个值已经可以通过线性基里面的值异或出来,那么最小值肯定是0,所以们要把查询的k-1

Code

#include<bits/stdc++.h>
#define lol long long
#define il inline
#define rg register
using namespace std; void in(lol &ans) {
ans=0; lol f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0',i=getchar();
ans*=f;
} lol n,q,T,cnt,flag;
lol arr[65]; il void init(lol x) {
for(lol i=63;i>=0;i--) {
if((x>>i&1)==0) continue;
if(!arr[i]) {arr[i]=x;break;}
else x^=arr[i];
}if(!x) flag=1;//插入失败
} il void query(lol k,lol ans=0) {
if(k>>cnt) {puts("-1");return;}
for(rg lol i=0;i<cnt;i++) {
if(k>>i&1) ans^=arr[i];
}printf("%lld\n",ans);
} il void rebuild() {
for(rg lol i=63;i>=0;i--)
for(rg lol j=i-1;j>=0;j--)
if(arr[i]>>j&1) arr[i]^=arr[j];
for(int i=0;i<=63;i++) if(arr[i]) arr[cnt++]=arr[i];
} int main()
{
in(T);
for(int t=1;t<=T;t++) {
flag=0; printf("Case #%d:\n",t);
in(n);
for(lol i=1,x;i<=n;i++) in(x),init(x);
rebuild(); in(q);
for(lol i=1,x;i<=q;i++) {
in(x); if(flag) x--; query(x);//查询的k的范围-1
}
memset(arr,0,sizeof(arr)); cnt=0;
}return 0;
}

HDU3949 XOR (线性基)的更多相关文章

  1. [hdu3949]XOR(线性基求xor第k小)

    题目大意:求xor所有值的第k小,线性基模板题. #include<cstdio> #include<cstring> #include<algorithm> #i ...

  2. HDU3949 XOR(线性基第k小)

    Problem Description XOR is a kind of bit operator, we define that as follow: for two binary base num ...

  3. Xor && 线性基练习

    #include <cstdio> #include <cstring> ; ; int cnt,Ans,b,x,n; inline int Max(int x,int y) ...

  4. 【BZOJ-2115】Xor 线性基 + DFS

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2142  Solved: 893[Submit][Status] ...

  5. BZOJ.2115.[WC2011]Xor(线性基)

    题目链接 \(Description\) 给定一张无向带边权图(存在自环和重边).求一条1->n的路径,使得路径经过边的权值的Xor和最大.可重复经过点/边,且边权和计算多次. \(Soluti ...

  6. BZOJ2115:[WC2011] Xor(线性基)

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  7. 2019牛客多校第一场H XOR 线性基模板

    H XOR 题意 给出一组数,求所有满足异或和为0的子集的长度和 分析 n为1e5,所以枚举子集肯定是不可行的,这种时候我们通常要转化成求每一个数的贡献,对于一组数异或和为0.我们考虑使用线性基,对这 ...

  8. BZOJ 2115 [Wc2011] Xor ——线性基

    [题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...

  9. BZOJ 2844: albus就是要第一个出场 [高斯消元XOR 线性基]

    2844: albus就是要第一个出场 题意:给定一个n个数的集合S和一个数x,求x在S的$2^n$个子集从小到大的异或和序列中最早出现的位置 一开始看错题了...人家要求的是x第一次出现位置不是第x ...

随机推荐

  1. kubernetes相关

    1.获取client , api-server 加token 或in-cluster方式 2.所有对象均有list update get 等方法 3.对象属性源码追踪,yaml与源码一一对应 4.一些 ...

  2. 人脸识别 ArcFace Demo [Windows]

    Arcsoft ArcfaceDemo for Windows, VS2013 C++   使用虹软技术开发完成 使用步骤: 1.下载SDK包,32位Windows平台将五个SDK包里lib中的文件到 ...

  3. Python3.5 Keras-Theano(含其他库)windows 安装环境

    https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-4.2.0-Windows-x86.execonda --version ...

  4. java安装环境变量设置

    1,依次打开:我的电脑-->属性-->高级-->环境变量 2,设置用户变量 新建 JAVA_HOME C:\Program Files\Java\j2sdk1.5.0 (JDK的安装 ...

  5. 新人学PHP,认为手动搭建环境而苦恼吗?这篇文章告诉你多简单!

    本教程适用于初学PHP,想了解手动搭建PHP环境的童鞋. 一键环境和高手勿喷. 本教程以下列版本软件为例: 所需软件目录 我在这里的目录结构是(个人习惯) 安装与配置 apache 双击安装Apach ...

  6. 软件工程课堂作业(十一)——NABC分析

    一.团队开发项目:基于Android的重力感应的解锁APP 二.项目特点:区别于一般解锁软件用开机按钮开锁解锁,我们的重力解锁软件根据动作实现解锁,减少了开机按钮的使用频率,提高寿命. 三.NABC分 ...

  7. Java容器之List接口

    List 接口: 1. List 接口是 Collection 的子接口,实现 List 接口的容器类中的元素是有顺序的,而且可以重复: 2. List 容器中的元素都对应一个整数型的序号记载其在容器 ...

  8. Qt Creator子目录项目-类似VS解决方案

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:Qt Creator子目录项目-类似VS解决方案     本文地址:http://techie ...

  9. nginx的平滑升级,不间断服务

    nginx的平滑升级,不间断服务   Nginx更新真的很快,最近nginx的1.0.5稳定版,nginx的0.8.55和nginx的0.7.69旧的稳定版本已经发布.我一项比较喜欢使用新版本的软件, ...

  10. 修改CSV中的某些值

    file.csv文件如下,然后对其中某些值进行变换操作,刚学Powershell的时候操作起来很麻烦,现在看来其实就是对于哈希表的操作. col1,col2,col3,col4 text1,text2 ...