题目链接

hdu6184

题解

题意是让我们找出所有的这样的图形:

我们只需要求出每条边分别在多少个三元环中,记为\(x\),再然后以该点为中心的图形数就是\({x \choose 2}\)

所以我们只需找出所有三元环

据说这是一个套路题

我们将所有无向边改为有向边,由度数小的向度数大的连边,度数相同就由编号小的向编号大的

容易发现这样建图一定是一个\(DAG\)

然后我们枚举边,将边的两端点出边的到达的点打上标记,当一个点被打上同一个标记时,就成环了

因为是\(DAG\)容易发现这样找环不会重复

然后就是时间复杂度证明

是\(O(m\sqrt{m})\)的

我们只需证明每个点出度不大于\(\sqrt{m}\)

假设有一个点出度大于\(\sqrt{m}\),那么由建边方式我们至知道出边到达的点度数不比该点小,这样总的边数就大于\(m\)了,不符

所以点的度数是\(O(\sqrt{m})\)的

为什么在\(hdu\)使用\(pair\)会\(CE\) = =

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<utility>
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) (node){a,b}
#define cls(s) memset(s,0,sizeof(s))
#define cp node
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 200005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct node{
int first,second;
};
int h[maxn],ne;
struct EDGE{int to,nxt,id;}ed[maxm];
inline void build(int u,int v,int x){
ed[++ne] = (EDGE){v,h[u],x}; h[u] = ne;
}
int de[maxn],a[maxm],b[maxm],now,n,m,ans[maxm];
cp vis[maxn];
int main(){
while (~scanf("%d%d",&n,&m)){
ne = now = 0;
REP(i,n) vis[i] = mp(0,0),h[i] = de[i] = 0;
REP(i,m){
ans[i] = 0;
a[i] = read(); b[i] = read();
de[a[i]]++; de[b[i]]++;
}
REP(i,m){
if (de[a[i]] > de[b[i]] || (de[a[i]] == de[b[i]] && a[i] > b[i]))
swap(a[i],b[i]);
build(a[i],b[i],i);
}
REP(i,m){
now++;
Redge(a[i]) vis[ed[k].to] = mp(now,ed[k].id);
Redge(b[i]) if (vis[ed[k].to].first == now){
ans[i]++;
ans[ed[k].id]++;
ans[vis[ed[k].to].second]++;
}
}
LL ret = 0;
REP(i,m) if (ans[i] > 1) ret += ans[i] * (ans[i] - 1) / 2;
printf("%lld\n",ret);
}
return 0;
}

hdu6184 Counting Stars 【三元环计数】的更多相关文章

  1. [hdu 6184 Counting Stars(三元环计数)

    hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...

  2. Codechef SUMCUBE Sum of Cubes 组合、三元环计数

    传送门 好久没有做过图论题了-- 考虑\(k\)次方的组合意义,实际上,要求的所有方案中导出子图边数的\(k\)次方,等价于有顺序地选出其中\(k\)条边,计算它们在哪一些图中出现过,将所有方案计算出 ...

  3. 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)

    [BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...

  4. loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数

    题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...

  5. BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)

    题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...

  6. LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数

    传送门 这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发-- 首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\lim ...

  7. HDU6184【Counting Stars】(三元环计数)

    题面 传送门 给出一张无向图,求 \(4\) 个点构成两个有公共边的三元环的方案数. 题解 orz余奶奶,orz zzk 首先,如果我们知道经过每条边的三元环个数\(cnt_i\),那么答案就是\(\ ...

  8. HDU 6184 Counting Stars 经典三元环计数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6184 题意: n个点m条边的无向图,问有多少个A-structure 其中A-structure满足V ...

  9. FJWC2019 子图 (三元环计数、四元环计数)

    给定 n 个点和 m 条边的一张图和一个值 k ,求图中边数为 k 的联通子图个数 mod 1e9+7. \(n \le 10^5, m \le 2 \times 10^5, 1 \le k \le ...

随机推荐

  1. Qt-第一个QML程序-4-自定义按钮类,动画,状态

    上篇中,我们写到了自己定义了一个按钮,但是呢,按照这样的写法,要写一个程序出来,那要累死了,所以,qml给我的感觉就是各种随便调用,所以了,可以自己写一个自己Button的qml,这样在以后用到了,就 ...

  2. 【WXS数据类型】RegExp

    生成 regexp 对象需要使用 getRegExp函数,注意与JS的使用方法不同( new RegExp(pattern,modifiers);) 原型:getRegExp(pattern, mod ...

  3. Spark- 根据IP获取城市(java)

    开源 IP 地址定位库 ip2region 1.4 ip2region 是准确率 99.9% 的 IP 地址定位库,0.0x毫秒级查询,数据库文件大小只有 2.7M,提供了 Java.PHP.C.Py ...

  4. Dreamweaver CS5网页制作教程

    说到Dreamweaver这个网页制作神器,不由得想起在学校里上的选修课,那是的我们只知道 table 布局,只知道构建网站最方便的是使用“所见即所得”编辑器.回忆一下,真的是很怀旧啊! 虽说咱现在大 ...

  5. UVa 1225 - Digit Counting - ACM/ICPC Danang 2007 解题报告 - C语言

    1.题目大意 把前n$(n\le 10000)$个整数顺次写在一起:12345678910111213……计算0~9各出现了多少次. 2.思路 第一想法是打表,然而觉得稍微有点暴力.不过暂时没有想到更 ...

  6. Matlab带比较方法的快排

    首先是主方法QUCIKSORT:(从小到大排列) function [A]=QUICKSORT(A,Low,high,mdat) set(,) if Low<high [A,w]=SPLITIO ...

  7. 接口_requests_基于python

    HTTP request python官方文档:http://cn.python-requests.org/zh_CN/latest/ 1. 环境 基于环境,需要安装requests 模块,安装方法 ...

  8. Java学习个人备忘录之接口

    abstract class AbsDemo { abstract void show1(); abstract void show2(); } 当一个抽象类中的方法都是抽象的时候,这时可以将该抽象类 ...

  9. UVALive - 6868 Facility Locations 想法题

    题目链接: http://acm.hust.edu.cn/vjudge/problem/88634 Facility Locations Time Limit: 3000MS 题意 给你一个m*n的矩 ...

  10. UVALive - 6864 Strange Antennas 扫描线

    题目链接: http://acm.hust.edu.cn/vjudge/problem/87213 Strange Antennas Time Limit: 3000MS 题意 一个雷达能够辐射到的范 ...