Author name disambiguation using a graph model with node splitting and merging based on bibliographic information
Author name disambiguation using a graph model with node splitting and merging based on bibliographic information
1. 概述
2. 创新点
3. 整体框架
3.1. Graph Model Constructor
3.2. Namesake Resolver
3.2.1. Cycle Detector
3.2.2. Namesake Splitter
3.3. Heteronymous Name Resolver
3.3.1. similar name searcher
3.3.2. same author detector
3.3.3. heteronymous name merger
3.4. Outlier Remover
4. Experiment
- 对比使用了哪些属性,信息缺失是否严重
- 如何定义相似性阈值
- 使用所有特征属性(合著者,title,地点)
- 在 arnet 上比 GFAD 性能好
- 需要预先定义标题和地址的相似度阈值
- 选择一个唯一的不变的阈值不太现实
- 仅使用共同作者
5. GFAD 局限性
Author name disambiguation using a graph model with node splitting and merging based on bibliographic information的更多相关文章
- 推荐系统中的Graph Model
转自:http://www.cnblogs.com/wentingtu/archive/2012/05/28/2521166.html 推荐中对graph model的研究主要有两个方面,一个是如何构 ...
- factor graph model
主实验 文慧:用户,商品,评分,review,ranking. 数据集:数据规模,论文源代码
- Fast Token Replacement in C#
http://www.codeproject.com/Articles/298519/Fast-Token-Replacement-in-Csharp Fast Token Replacement i ...
- 讲座:Influence maximization on big social graph
Influence maximization on big social graph Fanju PPT链接: social influence booming of online social ne ...
- Django文档——Model中的ForeignKey,ManyToManyField与OneToOneField
关联关系字段 (Relationship fields) ForeignKey,ManyToManyField与OneToOneField分别在Model中定义多对一,多对多,一对一关系. 例如,一本 ...
- 论文笔记:Person Re-identification with Deep Similarity-Guided Graph Neural Network
Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: ...
- 【论文笔记】Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28 15:4 ...
- [Windows Azure] Using the Graph API to Query Windows Azure AD
Using the Graph API to Query Windows Azure AD 4 out of 4 rated this helpful - Rate this topic This d ...
- DeepLearning - Overview of Sequence model
I have had a hard time trying to understand recurrent model. Compared to Ng's deep learning course, ...
随机推荐
- BZOJ1008:[HNOI2008]越狱——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1008 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中 ...
- BZOJ3123:[SDOI2013]森林——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=3123 https://www.luogu.org/problemnew/show/P3302 树上主 ...
- BZOJ2924 [Poi1998]Flat broken lines 【Dilworth定理 + 树状数组】
题目链接 BZOJ2924 题解 题面有误..是\(45°\) 如果两个点间连线与\(x\)轴夹角在\(45°\)以内,那么它们之间连边 求最小路径覆盖 = 最长反链 由于\(45°\)比较难搞,我们 ...
- [辅助软件] 微信小程序开发资源汇总 接入指南
https://github.com/justjavac/awesome-wechat-weapp https://github.com/justjavac/awesome-wechat-weapp ...
- ACE线程管理机制-并发控制
ACE有若干可用于并发控制的类.这些类可划分为以下范畴: ACE Lock类属 ACE Guard类属 ACE Condition类属 ACE Synchronization类 由于篇幅较长,我分别写 ...
- [sed]记录
sed的括号本身没有特殊意义,如果要保留通配内容,需要转义. echo "1) host" |sed 's/1) ([a-z])/$1) $1/' 有两处有问题. 1. 首先是上 ...
- Leetcode 557. 反转字符串中的单词 III
1.题目描述 给定一个字符串,你需要反转字符串中每个单词的字符顺序,同时仍保留空格和单词的初始顺序. 示例 1: 输入: "Let's take LeetCode contest" ...
- 关于移动DSP
提 纲 1.移动DSP与传统营销有什么不同? 2.为什么移动DSP是大势所趋? 3.哪些因素决定移动DSP的精准与否? 4.如何辨别移动DSP的真伪优劣? 5.不同行业的广告主如何用好移动DSP? ...
- Nginx简介及使用Nginx实现负载均衡的原理【通俗易懂,言简意赅】【转】
Nginx 这个轻量级.高性能的 web server 主要可以干两件事情: 直接作为http server(代替apache,对PHP需要FastCGI处理器支持): 另外一个功能就是作为反向代理服 ...
- Android SearchView结合Filter实现列表检索功能使用总结
下面贴出主要代码: <span style="font-size:14px;"> public class MainActivity ex ...