Author name disambiguation using a graph model with node splitting and merging based on bibliographic information
Author name disambiguation using a graph model with node splitting and merging based on bibliographic information
1. 概述
2. 创新点
3. 整体框架

3.1. Graph Model Constructor


3.2. Namesake Resolver
3.2.1. Cycle Detector

3.2.2. Namesake Splitter
3.3. Heteronymous Name Resolver
3.3.1. similar name searcher

3.3.2. same author detector
3.3.3. heteronymous name merger
3.4. Outlier Remover

4. Experiment

- 对比使用了哪些属性,信息缺失是否严重
- 如何定义相似性阈值


- 使用所有特征属性(合著者,title,地点)
- 在 arnet 上比 GFAD 性能好
- 需要预先定义标题和地址的相似度阈值
- 选择一个唯一的不变的阈值不太现实
- 仅使用共同作者
5. GFAD 局限性
Author name disambiguation using a graph model with node splitting and merging based on bibliographic information的更多相关文章
- 推荐系统中的Graph Model
转自:http://www.cnblogs.com/wentingtu/archive/2012/05/28/2521166.html 推荐中对graph model的研究主要有两个方面,一个是如何构 ...
- factor graph model
主实验 文慧:用户,商品,评分,review,ranking. 数据集:数据规模,论文源代码
- Fast Token Replacement in C#
http://www.codeproject.com/Articles/298519/Fast-Token-Replacement-in-Csharp Fast Token Replacement i ...
- 讲座:Influence maximization on big social graph
Influence maximization on big social graph Fanju PPT链接: social influence booming of online social ne ...
- Django文档——Model中的ForeignKey,ManyToManyField与OneToOneField
关联关系字段 (Relationship fields) ForeignKey,ManyToManyField与OneToOneField分别在Model中定义多对一,多对多,一对一关系. 例如,一本 ...
- 论文笔记:Person Re-identification with Deep Similarity-Guided Graph Neural Network
Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: ...
- 【论文笔记】Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28 15:4 ...
- [Windows Azure] Using the Graph API to Query Windows Azure AD
Using the Graph API to Query Windows Azure AD 4 out of 4 rated this helpful - Rate this topic This d ...
- DeepLearning - Overview of Sequence model
I have had a hard time trying to understand recurrent model. Compared to Ng's deep learning course, ...
随机推荐
- [洛谷P5068][Ynoi2015]我回来了
题目大意:给你一张$n(n\leqslant10^3)$个点$m(m\leqslant10^5)$个点的无向无权图,多组询问,每次询问给你一些二元组$(x_i,y_i)$,求有多少个$u$于至少一个二 ...
- 【bzoj】3477: [Usaco2014 Mar]Sabotage 01分数规划
这题算是01分数规划吧2333 sum-a[i]*x[i]=c*(n-x[i]) 化简一下就是sum-(a[i]-c)*x[i]-nc=0,每次找最大的(a[i]-c)*x[i](子段和),如果结果& ...
- 命令:ln 使用方法
http://linux.chinaunix.net/man/2004-10-06/45.shtml 指令名称 : ln 使用权限 : 所有使用者 使用方式 : ln [options] source ...
- Python3简单入门
在Mac和Linux上运行Python时,请打开终端,然后运行python3 Mac OSX 正确地同时安装Python 2.7 和Python3: http://www.jianshu.com/p ...
- GoLand安装配置
目录 下载 安装 破解 运行 参考网址 GoLand配置 下载 1 下载路径:https://pan.baidu.com/s/1JJ-Oxx9NkEK-PrwcvLys7Q,提取码:o0e5 2 下载 ...
- springboot的application.properties与.yml的区别
现在我们的application.properties文件内容是: server.port=8090 server.session-timeout=30 server.context-path= se ...
- 【题解】Huge Mods UVa 10692 欧拉定理
题意:计算a1^( a2^( a3^( a4^( a5^(...) ) ) ) ) % m的值,输入a数组和m,不保证m是质数,不保证互质 裸的欧拉定理题目,考的就一个公式 a^b = a^( b % ...
- sqlserver xml转表 及(cross apply与outer apply)
一. 需求是需要把','分割的字符串转为表,便于做关联查询,于是发现可以通过xml转为表,如下: declare @XXX xml set @XXX = ' <v> <aa>1 ...
- free命令buff和cache的区别
[root@iz8vb8kca7twx6177bqg0fz ~]# free -h total used free shared b ...
- Html5学习3(拖放、Video(视频)、Input类型(color、datetime、email、month 、number 、range 、search、Tel、time、url、week ))
1.Html拖放 <!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> < ...