【SPOJ】Highways(矩阵树定理)
【SPOJ】Highways(矩阵树定理)
题面
题解
矩阵树定理模板题
无向图的矩阵树定理:
对于一条边\((u,v)\),给邻接矩阵上\(G[u][v],G[v][u]\)加一
对于一条边\((u,v)\),给度数矩阵上\(D[u][u],D[v][v]\)加一
定义霍尔基夫矩阵\(C=D-G\)
将基尔霍夫矩阵去除任意一行和任意一列之后,
得到一个\((n-1)*(n-1)\)的行列式\(C\)
求解这个行列式的值,最后的\(|det(C)|\)就是结果
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define ll long long
#define RG register
#define MAX 13
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m;
ll a[MAX][MAX];
int main()
{
int T=read();
while(T--)
{
n=read();m=read();
memset(a,0,sizeof(a));
while(m--)
{
int u=read(),v=read();
a[u][u]++;a[v][v]++;
a[u][v]--;a[v][u]--;
}
--n;ll ans=1;
for(int i=1;i<=n;++i)
{
for(int j=i+1;j<=n;++j)
while(a[j][i])
{
ll t=a[i][i]/a[j][i];
for(int k=i;k<=n;++k)a[i][k]-=t*a[j][k],swap(a[i][k],a[j][k]);
ans=-ans;
}
ans*=a[i][i];
}
printf("%lld\n",ans);
}
return 0;
}
【SPOJ】Highways(矩阵树定理)的更多相关文章
- SPOJ Highways [矩阵树定理]
裸题 注意: 1.消元时判断系数为0,退出 2.最后乘ans要用double.... #include <iostream> #include <cstdio> #includ ...
- spoj104 HIGH - Highways 矩阵树定理
欲学矩阵树定理必先自宫学习一些行列式的姿势 然后做一道例题 #include <iostream> #include <cstring> #include <cstdio ...
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- SPOJ104 Highways 【矩阵树定理】
SPOJ104 Highways Description In some countries building highways takes a lot of time- Maybe that's b ...
- spoj104 highways 生成树计数(矩阵树定理)
https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的 ...
- 算法复习——矩阵树定理(spoj104)
题目: In some countries building highways takes a lot of time... Maybe that's because there are many p ...
- BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]
传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)
[LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...
随机推荐
- APP上下左右滑动屏幕的处理
#获得机器屏幕大小x,y driver = self.driver def getSize(): x = driver.get_window_size()['width'] y = driver.ge ...
- 【WXS数据类型】Object
Object 是一种无序的键值对. 属性: 名称 值类型 说明 [Object].constructor [String] 返回值为“Object”,表示类型的结构字符串 方法: 原型:[Object ...
- 孤荷凌寒自学python第八十六天对selenium模块进行较详细的了解
孤荷凌寒自学python第八十六天对selenium模块进行较详细的了解 (今天由于文中所阐述的原因没有进行屏幕录屏,见谅) 为了能够使用selenium模块进行真正的操作,今天主要大范围搜索资料进行 ...
- 关于Python3中函数:
# 关于Python3中函数: - 定义 定义函数使用关键字def,后接函数名和放在圆括号()中的可选参数列表,函数内容以冒号起始并且缩进.一般格式如下:``` def 函数名(参数列表): &quo ...
- 【第一章】MySQL数据概述
安装部署 备份恢复主备复制读写分离HA架构分布式数据库压力测试性能优化自动化运维 ==数据的存储方式1. 人工管理阶段2. 文件系统阶段3. 数据库系统管理阶段 ==数据库技术构成1. 数据库系统 D ...
- Python基础框架和工具
最近在学Python金融大数据分析,在安装Python进行大数据分析的环境时遇到很多问题,例如:在安装pandas包时候就要到各种错误,总是缺少很多安装包,最后发现利用Python的Anaconda进 ...
- 【算法分析】如何理解快慢指针?判断linked list中是否有环、找到环的起始节点位置。以Leetcode 141. Linked List Cycle, 142. Linked List Cycle II 为例Python实现
引入 快慢指针经常用于链表(linked list)中环(Cycle)相关的问题.LeetCode中对应题目分别是: 141. Linked List Cycle 判断linked list中是否有环 ...
- spring boot 中文乱码问题
在刚接触spring boot 2.0的时候,遇到了一些中文乱码的问题,网上找了一些解决方法. 这里自己做个汇总. 在application.properties文件中添加: spring.http. ...
- 感谢信——Alpha版
作为Thunder团队的leader,当时担任组长,说实话,确实是头脑一热,可后来,在确定选题时,看着大家都有自己的想法,看着大家都那么踊跃,而我因为性格的原因,总是难以做决定,导致选题这件事就开了几 ...
- ajax 返回值问题
错误示例:function returnFlag(){ $.ajax({ type:"post", dataType:"json", data:JSON.str ...