题目描述

Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 <= K <= 16), each with value in the range 1..100,000,000. FJ would like to make a sequence of N purchases (1 <= N <= 100,000), where the ith purchase costs c(i) units of money (1 <= c(i) <= 10,000). As he makes this sequence of purchases, he can periodically stop and pay, with a single coin, for all the purchases made since his last payment (of course, the single coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he owes, he sadly receives no changes in return! Please compute the maximum amount of money FJ can end up with after making his N purchases in sequence. Output -1 if it is impossible for FJ to make all of his purchases.

K个硬币,要买N个物品。

给定买的顺序,即按顺序必须是一路买过去,当选定买的东西物品序列后,付出钱后,货主是不会找零钱的。现希望买完所需要的东西后,留下的钱越多越好,如果不能完成购买任务,输出-1

输入

Line 1: Two integers, K and N.

* Lines 2..1+K: Each line contains the amount of money of one of FJ's coins.

* Lines 2+K..1+N+K: These N lines contain the costs of FJ's intended purchases.

输出

* Line 1: The maximum amount of money FJ can end up with, or -1 if FJ cannot complete all of his purchases.

样例输入

3 6
12
15
10
6
3
3
2
3
7

样例输出

12


题解

状压dp+二分

f[i]表示硬币使用状态为i时最多能购买的物品

那么有f[i]=k (sum[k]-sum[f[i^(1<<j)]]≤v[j])。

然后二分查找求出k即可。

还是注意数组从1开始的问题。

#include <cstdio>
#include <algorithm>
using namespace std;
int f[70000] , v[20] , a[100010] , sum[100010] , cost[70000] , n , base[70000];
int search(int z , int c)
{
int l = z , r = n , mid , ans = -1;
while(l <= r)
{
mid = (l + r) >> 1;
if(sum[mid] - sum[z] <= c)
ans = mid , l = mid + 1;
else r = mid - 1;
}
return ans;
}
int main()
{
int k , i , j , tmp , ans = -1 , sn = 0;
scanf("%d%d" , &k , &n);
for(i = 1 ; i <= k ; i ++ )
scanf("%d" , &v[i]) , sn += v[i] , base[1 << (i - 1)] = i;
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &a[i]) , sum[i] = sum[i - 1] + a[i];
for(i = 1 ; i < (1 << k) ; i ++ )
{
for(j = 1 ; j <= k ; j ++ )
{
if((1 << (j - 1)) & i)
{
tmp = search(f[i ^ (1 << (j - 1))] , v[j]);
if(tmp != -1)
f[i] = max(f[i] , tmp);
}
}
}
for(i = 1 ; i < (1 << k) ; i ++ )
{
cost[i] = cost[i - (i & (-i))] + v[base[i & (-i)]];
if(f[i] == n) ans = max(ans , sn - cost[i]);
}
printf("%d\n" , ans);
return 0;
}

【bzoj3312】[Usaco2013 Nov]No Change 状态压缩dp+二分的更多相关文章

  1. 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分

    [BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...

  2. bzoj3312: [Usaco2013 Nov]No Change

    题意: K个硬币,要买N个物品.K<=16,N<=1e5 给定买的顺序,即按顺序必须是一路买过去,当选定买的东西物品序列后,付出钱后,货主是不会找零钱的.现希望买完所需要的东西后,留下的钱 ...

  3. BFS+状态压缩DP+二分枚举+TSP

    http://acm.hdu.edu.cn/showproblem.php?pid=3681 Prison Break Time Limit: 5000/2000 MS (Java/Others)   ...

  4. 【bzoj3886】[Usaco2015 Jan]Moovie Mooving 状态压缩dp+二分

    题目描述 Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer J ...

  5. 【bzoj1231】[Usaco2008 Nov]mixup2 混乱的奶牛 状态压缩dp

    题目描述 混乱的奶牛[Don Piele, 2007]Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S_i <= ...

  6. 【bzoj1725】[USACO2006 Nov]Corn Fields牧场的安排 状态压缩dp

    题目描述 Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地.FJ打算在牧场上的某几格土 ...

  7. bzoj 3312: [Usaco2013 Nov]No Change

    3312: [Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for his ...

  8. hdu 4057 AC自己主动机+状态压缩dp

    http://acm.hdu.edu.cn/showproblem.php?pid=4057 Problem Description Dr. X is a biologist, who likes r ...

  9. HOJ 2226&POJ2688 Cleaning Robot(BFS+TSP(状态压缩DP))

    Cleaning Robot Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4264 Accepted: 1713 Descri ...

随机推荐

  1. 全国各大城市Uber客服联系方式(电话、邮箱、微博)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. HDU 4418 Time travel

    Time travel http://acm.hdu.edu.cn/showproblem.php?pid=4418 分析: 因为走到最后在折返,可以将区间复制一份,就变成了只往右走,01234321 ...

  3. nodejs 事件机制

    node 事件机制   一 三种定时器 NodeJS中有三种类型的定时器:超时时间.时间间隔.即时定时器 1.超时时间:setTimeout(callback,delayMilliSeconds,[a ...

  4. 一个小白的测试环境docker化之路

    本文来自网易云社区 作者:叶子 学习docker搭建测试环境断断续续也有三个多月了,希望记录一下这个过程.常言道,总结过去,展望未来嘛~文章浅显,还望各位大神路过轻拍. 按照国际惯例,先说一下背景: ...

  5. 金山注入浏览器默认开启上网导航 www.uu114.cn

    金山注入浏览器默认开启上网导航 www.uu114.cn 今天突然发现我的电脑所有浏览器打开后,都会默认打开一个www.uu114.cn网站,chrome.firefox和IE都中招了.经过排查,发现 ...

  6. sql注入记录------类型转换错误---convert()函数,一句话图片马制作

    sql注入在联合查询是出现一下错误查不到数据 Illegal mix of collations for operation 'UNION' 用convert() 转换编码为utf8 或者big5 就 ...

  7. Selenium安装(二)

    安装python 安装Selenium之前首先来说一下Python,python是一门动态性语言,python的编写比较灵活,简洁,开发效率高.因此以python结合selenium来进行自动化测试. ...

  8. Java进阶知识点:服务端高并发的基石 - NIO与Reactor AIO与Proactor

    一.背景 要提升服务器的并发处理能力,通常有两大方向的思路. 1.系统架构层面.比如负载均衡.多级缓存.单元化部署等等. 2.单节点优化层面.比如修复代码级别的性能Bug.JVM参数调优.IO优化等等 ...

  9. Logistic回归和SVM的异同

    这个问题在最近面试的时候被问了几次,让谈一下Logistic回归(以下简称LR)和SVM的异同.由于之前没有对比分析过,而且不知道从哪个角度去分析,一时语塞,只能不知为不知. 现在对这二者做一个对比分 ...

  10. Centos6更新yum repo

    163开源镜像站是国内比较老的一个网站.很多人都在使用. step 1/3 备份原镜像文件: cd /etc/yum.repos.d mv CentOS-Base.repo CentOS-Base.r ...