题目描述

Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 <= K <= 16), each with value in the range 1..100,000,000. FJ would like to make a sequence of N purchases (1 <= N <= 100,000), where the ith purchase costs c(i) units of money (1 <= c(i) <= 10,000). As he makes this sequence of purchases, he can periodically stop and pay, with a single coin, for all the purchases made since his last payment (of course, the single coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he owes, he sadly receives no changes in return! Please compute the maximum amount of money FJ can end up with after making his N purchases in sequence. Output -1 if it is impossible for FJ to make all of his purchases.

K个硬币,要买N个物品。

给定买的顺序,即按顺序必须是一路买过去,当选定买的东西物品序列后,付出钱后,货主是不会找零钱的。现希望买完所需要的东西后,留下的钱越多越好,如果不能完成购买任务,输出-1

输入

Line 1: Two integers, K and N.

* Lines 2..1+K: Each line contains the amount of money of one of FJ's coins.

* Lines 2+K..1+N+K: These N lines contain the costs of FJ's intended purchases.

输出

* Line 1: The maximum amount of money FJ can end up with, or -1 if FJ cannot complete all of his purchases.

样例输入

3 6
12
15
10
6
3
3
2
3
7

样例输出

12


题解

状压dp+二分

f[i]表示硬币使用状态为i时最多能购买的物品

那么有f[i]=k (sum[k]-sum[f[i^(1<<j)]]≤v[j])。

然后二分查找求出k即可。

还是注意数组从1开始的问题。

#include <cstdio>
#include <algorithm>
using namespace std;
int f[70000] , v[20] , a[100010] , sum[100010] , cost[70000] , n , base[70000];
int search(int z , int c)
{
int l = z , r = n , mid , ans = -1;
while(l <= r)
{
mid = (l + r) >> 1;
if(sum[mid] - sum[z] <= c)
ans = mid , l = mid + 1;
else r = mid - 1;
}
return ans;
}
int main()
{
int k , i , j , tmp , ans = -1 , sn = 0;
scanf("%d%d" , &k , &n);
for(i = 1 ; i <= k ; i ++ )
scanf("%d" , &v[i]) , sn += v[i] , base[1 << (i - 1)] = i;
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &a[i]) , sum[i] = sum[i - 1] + a[i];
for(i = 1 ; i < (1 << k) ; i ++ )
{
for(j = 1 ; j <= k ; j ++ )
{
if((1 << (j - 1)) & i)
{
tmp = search(f[i ^ (1 << (j - 1))] , v[j]);
if(tmp != -1)
f[i] = max(f[i] , tmp);
}
}
}
for(i = 1 ; i < (1 << k) ; i ++ )
{
cost[i] = cost[i - (i & (-i))] + v[base[i & (-i)]];
if(f[i] == n) ans = max(ans , sn - cost[i]);
}
printf("%d\n" , ans);
return 0;
}

【bzoj3312】[Usaco2013 Nov]No Change 状态压缩dp+二分的更多相关文章

  1. 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分

    [BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...

  2. bzoj3312: [Usaco2013 Nov]No Change

    题意: K个硬币,要买N个物品.K<=16,N<=1e5 给定买的顺序,即按顺序必须是一路买过去,当选定买的东西物品序列后,付出钱后,货主是不会找零钱的.现希望买完所需要的东西后,留下的钱 ...

  3. BFS+状态压缩DP+二分枚举+TSP

    http://acm.hdu.edu.cn/showproblem.php?pid=3681 Prison Break Time Limit: 5000/2000 MS (Java/Others)   ...

  4. 【bzoj3886】[Usaco2015 Jan]Moovie Mooving 状态压缩dp+二分

    题目描述 Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer J ...

  5. 【bzoj1231】[Usaco2008 Nov]mixup2 混乱的奶牛 状态压缩dp

    题目描述 混乱的奶牛[Don Piele, 2007]Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S_i <= ...

  6. 【bzoj1725】[USACO2006 Nov]Corn Fields牧场的安排 状态压缩dp

    题目描述 Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地.FJ打算在牧场上的某几格土 ...

  7. bzoj 3312: [Usaco2013 Nov]No Change

    3312: [Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for his ...

  8. hdu 4057 AC自己主动机+状态压缩dp

    http://acm.hdu.edu.cn/showproblem.php?pid=4057 Problem Description Dr. X is a biologist, who likes r ...

  9. HOJ 2226&POJ2688 Cleaning Robot(BFS+TSP(状态压缩DP))

    Cleaning Robot Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4264 Accepted: 1713 Descri ...

随机推荐

  1. 20145234黄斐《信息安全系统设计基础》第八周(Linux下vim相关命令)

    Linux下vim相关命令 在编辑程序时经常使用vim,所以记住一些常用的指令还是很有必要的 文件命令 vim file 打开单个文件vim file vim file1 file2 file3 .. ...

  2. EnterpriseDB公司的 Postgres Solution Pack (一)

    下载地址: http://www.enterprisedb.com/products-services-training/products/postgres-plus-solution-pack/do ...

  3. 北京Uber优步司机奖励政策(3月11日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. 2 进程multiprocessing [mʌltɪ'prəʊsesɪŋ] time模块

    1.multiprocessing模块 multiprocessing模块就是跨平台版本的多进程模块. multiprocessing模块提供了一个Process类来代表一个进程对象, 2.Proce ...

  5. Unknown host 'services.gradle.org' 解决方法

    报错如下: Unknown host 'services.gradle.org'. You may need to adjust the proxy settings in Gradle. Learn ...

  6. (转) 在Windows 下安装drush

    原帖地址:http://www.drupalla.com/node/2263 Drush是一个在命令行使用的php脚本库,在服务器本地通过php解释器调用执行,可以用命令行操作的形式管理Drupal站 ...

  7. Python文件操作大全

    Python 编程文件操作大全   文件打开模式 打开模式 执行操作 'r' 以只读方式打开文件(默认) 'w' 以写入的方式打开文件,会覆盖已存在的文件 'x' 如果文件已经存在,使用此模式打开将引 ...

  8. Vue 编程之路(二)——跳转页面传值

    最近公司的一个项目中使用 Vue 2.0 + element UI 实现一个后台管理系统的前端部分,属于商城类型.其中我负责的部分有一项需要跳转页面,由于跳转前的页面是多个组件构成的,所以在跳转页面的 ...

  9. ionic 提示框

    html文件 <ion-header> <ion-navbar> <ion-title>Toast</ion-title> </ion-navba ...

  10. ThreadLocal 线程的私有内存

    话说在<操作系统原理>这门课里面,我们学到了很多概念:进程.线程.锁.PV操作.读写者问题等等,大家还记得么?(估计有些概念早已忘记了吧,哈哈哈~) 其中关于进程.线程和锁的东西是我们平时 ...