http://www.lydsy.com/JudgeOnline/problem.php?id=2226

题目大意:给定一个n,求lcm(1,n)+lcm(2,n)+……+lcm(n,n)。

——————————————————————————————

如果是刚做完[SDOI2012]Longge的问题的话这道题应该能轻松一些。

显然答案可以转化为∑n*i/gcd(n,i)。

设k=gcd(n,i),则可以转化为∑n*i/k(k|n且gcd(n,i)=k),然后变成n*(∑i/k)(k|n且gcd(n,i)=k)。

又因为gcd(n/k,i/k)=1,所以对于一个k,∑i/k就是与n/k互质的数的和。

而对于一个数n,求与n互质的数的和=n*phi(n)/2。

于是这题我们就做完了。

PS:秉承着万恶的SPOJ题的尿性,这题有点卡常数。

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
ll phi[N],su[N];
bool he[N];
void Euler(int n){
int tot=;
phi[]=;
for(int i=;i<=n;i++){
if(!he[i]){
su[++tot]=i;
phi[i]=i-;
}
for(int j=;j<=tot;j++){
if(i*su[j]>=n)break;
he[i*su[j]]=;
if(i%su[j]==){
phi[i*su[j]]=phi[i]*su[j];break;
}
else phi[i*su[j]]=phi[i]*(su[j]-);
}
}
return;
}
int main(){
Euler();
int t;
scanf("%d",&t);
while(t--){
int n;ll ans=;
scanf("%d",&n);
for(int i=;i*i<=n;i++){
if(n%i)continue;
int k=n/i;
ans+=(ll)(phi[k]*k+)>>;
if(i*i<n)ans+=(ll)(phi[i]*i+)>>;
}
printf("%lld\n",ans*n);
}
return ;
}

BZOJ2226 & SPOJ5971:LCMSum——题解的更多相关文章

  1. [BZOJ2226][SPOJ5971]LCMSum(莫比乌斯反演)

    2226: [Spoj 5971] LCMSum Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1949  Solved: 852[Submit][S ...

  2. BZOJ2226:[SPOJ5971]LCMSum

    Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes t ...

  3. [bzoj2226][Spoj5971]LCMSum_欧拉函数_线性筛

    LCMSum bzoj-2226 Spoj-5971 题目大意:求$\sum\limits_{i=1}^nlcm(i,n)$ 注释:$1\le n\le 10^6$,$1\le cases \le 3 ...

  4. AHOI2018训练日程(3.10~4.12)

    (总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...

  5. 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)

    [BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...

  6. BZOJ2226: [Spoj 5971] LCMSum

    题解: 考虑枚举gcd,然后问题转化为求<=n且与n互质的数的和. 这是有公式的f[i]=phi[i]*i/2 然后卡一卡时就可以过了. 代码: #include<cstdio> # ...

  7. 【bzoj2226】[Spoj 5971] LCMSum 欧拉函数

    题目描述 Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Leas ...

  8. BZOJ2226:LCMSum(欧拉函数)

    Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes t ...

  9. [BZOJ2226]LCMSum

    转化一下,$\sum\limits_{i=1}^n[i,n]=n\sum\limits_{i=1}^n\dfrac i{(i,n)}$ 枚举$d=(i,n)$,上式变为$n\sum\limits_{d ...

随机推荐

  1. leetcode笔记9 Move Zeroes

    题目要求: Given an array nums, write a function to move all 0's to the end of it while maintaining the r ...

  2. VIN码识别/车架号OCR识别:快速占领汽车后市场数据入口

    大数据时代,企业在数据入口方面的竞争越来越激烈,这种对于入口级的大数据“争夺战”,让很多企业在数据挖掘和收集的技术方面开始加快更新速度. 在当前IT行业激烈竞争环境之下,对于入口产品的控制成为了大数据 ...

  3. Python元组与列表的区别和联系?

    1.  元组和列表比较相似,不过它们之间也有着不同: (1)列表:一个大仓库,你可以随时往里边添加和删除任何东西. (2)元组:封闭的列表,一旦定义,就不可改变(不能添加.删除或修改). 2. 什么情 ...

  4. 使用InstallShield-Limited-Edition制作安装包

    1.打开此网站,进行注册,获取序列码以及下载InstallShield-Limited-Edition 2.安装完成之后,打开VisualStudio,新建项目 3.填写基本应用信息 4.配置相关信息 ...

  5. 返回json数组的GET接口

    Action() { web_reg_find("Search=Body", "SaveCount=find_cnt", "Text=code\&qu ...

  6. Halcon图像采集助手提示找不到指定DLL文件

    问题原因: Halcon软件更新导致某些图像采集DLL失效,这个时候就需要去MVTEC官网下载图像采集接口补丁程序,MVTEC官网地址http://www.mvtec.com/. 对于其他模块失效的D ...

  7. Python面向对象-访问限制

    在Class内部,可以有字段,方法和属性,而外部代码可以通过直接调用实例变量的方法来操作数据, (1)私有普通字段 比如对于下面的Student类,name字段可以在外面通过对象进行直接访问: cla ...

  8. 使用Python进行AES加密和解密

    摘录于:http://blog.csdn.net/nurke/article/details/77267081 另外参考:http://www.cnblogs.com/kaituorensheng/p ...

  9. 最小生成树——prim

    prim:逐“点”生成最小生成树 与Dijkstra不同的是:加入点到生成树中,不要考虑与源点的距离,而是考虑与生成树的距离 #include <iostream> #include &l ...

  10. 《剑指offer》---顺时针打印矩阵

    本文算法使用python3实现 1. 问题1 1.1 题目描述:   输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下矩阵: 1 2 3 4 5 6 7 8 9 10 ...