[NOIP2017]逛公园(DP)
先spfa一遍处理出d[]数组,(从n开始bfs一遍标记可以达到n的点)
题意即,在走最短路的基础上,可以最多多走K长度的路径,
考虑DP,每次剩余可走的长度会因决策而改变,所以考虑dp[i][j]为当前在i号节点,剩余可多走长度为j的方案数
dp[u][j]可以从dp[v][e[i].w-(d[v]-d[u])]转移而来,(其中u->v,e[i].w-(d[v]-d[u])即为当前决策多走的路径))
再考虑有0边的情况,如果构成环就会无限方案数,只要在记忆化的时候特判一下-1即可
ps:对于一个dp[u][j]可能为0,初始化不能为0
Code
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
#define N 100010
using namespace std; struct info{int to,nex,w;}e[N*2],re[N*2];
int T,n,m,k,mo,tot,head[N],d[N],rtot,rhead[N],dp[N][56];
bool ab[N];
bool vis[N][56]; inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
} void Init(){
memset(vis,0,sizeof(vis));
memset(head,0,sizeof(head));
memset(rhead,0,sizeof(rhead));
memset(ab,0,sizeof(ab));
memset(dp,-1,sizeof(dp));
tot=rtot=0;
} inline void Link(int u,int v,int w){
e[++tot].to=v,e[tot].w=w;e[tot].nex=head[u];head[u]=tot;
} inline void rLink(int u,int v,int w){
re[++rtot].to=v,re[rtot].w=w;re[rtot].nex=rhead[u];rhead[u]=rtot;
} namespace SPFA{
queue<int> q;
bool vis[N];
void spfa(){
for(;!q.empty();q.pop());
memset(vis,0,sizeof(vis));
memset(d,127,sizeof(d));
d[1]=0,q.push(1);
for(;!q.empty();){
int u=q.front();vis[u]=0,q.pop();
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(d[v]>d[u]+e[i].w){
d[v]=d[u]+e[i].w;
if(!vis[v]) vis[v]=1,q.push(v);
}
}
}
memset(vis,0,sizeof(vis));
}
void afps(){
for(;!q.empty();q.pop());
q.push(n),ab[n]=1;
for(;!q.empty();){
int u=q.front();q.pop();
for(int i=rhead[u];i;i=re[i].nex){
int v=re[i].to;
if(ab[v]) continue;
ab[v]=1,q.push(v);
}
}
}
void work(){spfa(),afps();}
} int DP(int u,int k){
if(k<0)return 0;
int &tmp=dp[u][k];
if(vis[u][k]) return -2;
if(tmp!=-1) return tmp;
vis[u][k]=1;
tmp=(u==n)?1:0;
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(!ab[v]) continue;
int x=DP(v,k-(e[i].w-(d[v]-d[u])));
if(x==-2) return -2;
else (tmp+=x)%=mo;
}
vis[u][k]=0;
return tmp;
} int main(){
for(T=read();T--;){
Init();
n=read(),m=read(),k=read(),mo=read();
for(;m--;){
int u=read(),v=read(),w=read();
Link(u,v,w),rLink(v,u,w);
}
SPFA::work();
int Ans=DP(1,k);
if(Ans==-2)puts("-1");
else printf("%d\n",Ans);
}
return 0;
}
[NOIP2017]逛公园(DP)的更多相关文章
- 【题解】NOIP2017逛公园(DP)
[题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...
- $[NOIp2017]$ 逛公园 $dp$/记搜
\(Des\) 给定一个有向图,起点为\(1\),终点为\(n\),求和最短路相差不超过\(k\)的路径数量.有\(0\)边.如果有无数条,则输出\(-1\). \(n\leq 10^5,k\leq ...
- [NOIP2017] 逛公园
[NOIP2017] 逛公园 题目大意: 给定一张图,询问长度 不超过1到n的最短路长度加k 的1到n的路径 有多少条. 数据范围: 点数\(n \le 10^5\) ,边数\(m \le 2*10^ ...
- 【比赛】NOIP2017 逛公园
考试的时候灵光一闪,瞬间推出DP方程,但是不知道怎么判-1,然后?然后就炸了. 后来发现,我只要把拓扑和DP分开,中间加一个判断,就AC了,可惜. 看这道题,我们首先来想有哪些情况是-1:只要有零环在 ...
- NOIP2017逛公园(dp+最短路)
策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策策每天都会 ...
- NOIP2017 逛公园 题解报告 【最短路 + 拓扑序 + dp】
题目描述 策策同学特别喜欢逛公园.公园可以看成一张NNN个点MMM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,NNN号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花 ...
- P3953 逛公园(dp,最短路)
P3953 逛公园 题目描述 策策同学特别喜欢逛公园.公园可以看成一张NN个点MM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,NN号点是公园的出口,每条边有一个非负权值, 代表策策经 ...
- [NOIP2017]逛公园 题解
我连D1T3都不会我联赛完蛋了 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 N 个点 M 条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口, N 号点是公园的出口,每条边有一个非负 ...
- [NOIP2017] 逛公园 解题报告(DP)
我很不想说 在我的AC代码上我打了表,但实在没有办法了.莫名的8,9个点RE.然而即便是打表...也花了我很久. 这大概是NOIP2017最难的题了,为了让不懂的人更容易理解,这篇题解会比较详细 我的 ...
- [NOIP2017]逛公园 最短路+拓扑排序+dp
题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...
随机推荐
- centos 6 YUM安装 lnmp
准备篇: 1.配置防火墙,开启80端口.3306端口 vi /etc/sysconfig/iptables -A INPUT -m state --state NEW -m t ...
- 获取所有权windows目录所有权
Takeown /r /f 盘符:\目录\目录 例如: Takeown /r /f C:\Windows\CSC
- dbms_stats应用相关
Q: DBMS_STATS.GATHER_SCHEMA_STATS ('schema_name'); 使用这个收集统计信息,estimate_percent使用默认值 ...
- ADF系列-1.EO的各个属性初探
ADF中的EO可以看做关系型数据库中表的java展现形式. 1.Type 此处的Type是java的类型,而需要映射的是数据库的类型,两者之间存在一些差异,各个映射关系如下: 数据库列类型 BC 属性 ...
- Codeforces Round #527 (Div. 3) D2. Great Vova Wall (Version 2) 【思维】
传送门:http://codeforces.com/contest/1092/problem/D2 D2. Great Vova Wall (Version 2) time limit per tes ...
- Linux入门基础介绍
概述: 1. linux是一个开源.免费的操作系统,其稳定性.安全性.处理多并发已经得到业界的认可,目前很多企业级的项目 都会部署到Linux/unix系统上. 2. 常见的操作系统(w ...
- webstorm window找不到文件'chrome'
1.打开webstorm设置: File->Settings->Tools->Web Browsers->更改谷歌浏览器的Path(获取方式:谷歌浏览器的快捷键->右键- ...
- 利用arduino给PCB800099液晶驱动板烧录程序
某宝上购买了一块PCB800099液晶驱动板, 卖家出货的时候刷的驱动不对,遂需要重新烧录程序 可是苦于没有编程器,寻遍网络后找到几种解决方案: arduino刷,树莓派I2C口刷,linux下用vg ...
- nodejs实战的github地址,喜欢的你还等啥
第一章.第二章:使用Express + MongoDB搭建多人博客:https://github.com/nswbmw/N-blog 第三章:使用Redis搭建漂流瓶服务器:https://githu ...
- OpenMax的接口与实现
OpenMax IL层的接口定义由若干个头文件组成,这也是实现它需要实现的内容,它们的基本描述如下所示. OMX_Types.h:OpenMax Il的数据类型定义 OMX_Core.h:OpenMa ...