Description

给定一个长为\(n(n<=10^5)\)的数组

数组里的数不超过\(10^6\)

有两种操作:

1:求\(sum[l,r]\);

2:对\([l,r]\)中的所有数和\(x\)异或

Input

第一行一个整数\(n\),代表有一个长度为\(n\)的数组。

第二行\(n\)个整数,代表\(a_i\)

第三行为一个整数\(m\),代表有\(m\)次操作。

接下来\(m\)行每行描述一个操作。

Output

对于每一个操作\(1\),输出一行代表\(sum[l,r]\).

这题不错,线段树+二进制拆位

由于异或不具有叠加性,所以不能用\(lazy\)标记直接异或。

我们记录\(tr[o][i]\)代表当前节点\(o\),二进制位\(i\)上是\(1\)的数有多少个。

由于,如果某一二进制位上原来为\(1\),且当前异或的数\(x\),当前二进制位上也有\(1\),那么我们的当前\(tr[o][i]=r-l+1-tr[o][i]\)。

可以理解为\(01\)交换。

然后由于\(2^{20}\)比\(10^6\)要大。

所以只需要拆到\(20\)即可。

然后直接计算即可。

PS:记得开\(long \ long\)!

代码

#include<cstdio>
#include<algorithm>
#include<iostream>
#define int long long
#define R register using namespace std; const int gz=1e5+8; inline void in(R int &x)
{
R int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} int n,tr[gz<<2][21],tg[gz<<2],m; #define ls o<<1
#define rs o<<1|1 inline void up(R int o)
{
for(R int i=20;~i;i--)
tr[o][i]=tr[ls][i]+tr[rs][i];
} void build(R int o,R int l,R int r)
{
if(l==r)
{
R int x;in(x);
for(R int i=20;~i;i--)
if((x>>i)&1)tr[o][i]++;
return;
}
R int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
up(o);
} inline void down(R int o,R int l,R int r)
{
if(tg[o]==0)return;
tg[ls]^=tg[o];tg[rs]^=tg[o];
R int mid=(l+r)>>1;
for(R int i=20;~i;i--)
{
if((tg[o]>>i)&1)
tr[ls][i]=mid-l+1-tr[ls][i],
tr[rs][i]=r-mid-tr[rs][i];
}
tg[o]=0;
return;
} void change(R int o,R int l,R int r,R int x,R int y,R int k)
{
if(x<=l and y>=r)
{
tg[o]^=k;
for(R int i=20;~i;i--)
if((k>>i)&1)
tr[o][i]=r-l+1-tr[o][i];
return;
}
down(o,l,r);
int mid=(l+r)>>1;
if(x<=mid)change(ls,l,mid,x,y,k);
if(y>mid) change(rs,mid+1,r,x,y,k);
up(o);
} int query(R int o,R int l,R int r,R int x,R int y)
{
if(x<=l and y>=r)
{
R int res=0;
for(R int i=20;~i;i--)
res+=(1<<i)*tr[o][i];
return res;
}
down(o,l,r);
R int mid=(l+r)>>1,as=0;
if(x<=mid)as+=query(ls,l,mid,x,y);
if(y>mid)as+=query(rs,mid+1,r,x,y);
return as;
} signed main()
{
in(n);build(1,1,n);in(m);
for(R int opt,l,r,x;m;m--)
{
in(opt);
if(opt==1)
{
in(l),in(r);
printf("%lld\n",query(1,1,n,l,r));
}
else
{
in(l),in(r),in(x);
change(1,1,n,l,r,x);
}
}
}

线段树+二进制位拆分【CF242E】XOR on Segment的更多相关文章

  1. CF242E XOR on Segment

    CF242E XOR on Segment codeforces 洛谷 关于异或,无法运用懒标记实现区间异或: 可以像trie树一样拆位,将每个值拆成二进制数,对此建相应个数的线段树. 0 1与 0异 ...

  2. 线段树+离散化 IP地址段检查 SEGMENT TREE

    Problem: Give a series of IP segments, for example, [0.0.0.1-0.0.0.3], [123.234.232.21-123.245.21.1] ...

  3. CodeForces 242E "XOR on Segment"(线段树)

    传送门 •题意 给你一个包含 n 个数的序列 a,定义序列上的两个操作: (1)$1,l,r\ :\ ans=\sum_{i=l}^{r}a_i$; (2)$2,l,r,x\ :\ \forall\ ...

  4. codeforces 22E XOR on Segment 线段树

    题目链接: http://codeforces.com/problemset/problem/242/E E. XOR on Segment time limit per test 4 seconds ...

  5. Codeforces 242E:XOR on Segment(位上的线段树)

    http://codeforces.com/problemset/problem/242/E 题意:给出初始n个数,还有m个操作,操作一种是区间求和,一种是区间xor x. 思路:昨天比赛出的一道类似 ...

  6. codeforces 242E - XOR on Segment (线段树 按位数建树)

    E. XOR on Segment time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...

  7. Codeforces Round #149 (Div. 2) E. XOR on Segment (线段树成段更新+二进制)

    题目链接:http://codeforces.com/problemset/problem/242/E 给你n个数,m个操作,操作1是查询l到r之间的和,操作2是将l到r之间的每个数xor与x. 这题 ...

  8. CodeForces 242E - XOR on Segment 二维线段树?

    今天练习赛的题....又是线段树的变换..拿到题我就敲了个点更新区间查询的..果断超时...然后想到了可以将每个数与合表示成不进位的二进制数..这样就可以区间进行更新了..比赛的时候写搓了..刚重写了 ...

  9. codeforces 242E. XOR on Segment 线段树

    题目链接 给n个数, 两种操作, 一种是求区间内的数的和, 一种是将区间内的数异或x. 异或x没有什么思路, 单个异或肯定超时, 区间异或也没有办法做....后来才知道可以按位建线段树, 这样建20棵 ...

随机推荐

  1. 2017 济南综合班 Day 4

    T1 外星人 二维前缀和 #include<cstdio> #define N 1001 using namespace std; bool v[N][N]; int sum[N][N]; ...

  2. 第k小子集

    有n个数,共有2^n个子集,一个子集的值看做其所有数的和.求这2^n个子集中第K小的子集.n<=35. meet in the middle + 二分判定 注意在双指针逼近时,相等的数带来的影响 ...

  3. 51Nod 1091 线段重叠 | 贪心

    Input示例 5 1 5 2 4 2 8 3 7 7 9 Output示例 4 first try: O(n^2):二层循环,减法取最大 后五个time limit exceeded #includ ...

  4. mixin模式特点

    mixin模式特点: 1.单一功能, 2.不和基类关联,可以和任意基类组合,基类可以不和mixin关联就可以初始化成功 3.不使用 super() 用法

  5. 【洛谷 P3809】 【模板】后缀排序

    题目链接 先占个坑,以后再补. \(SA\)的总结肯定是要写的. 等理解地深入一点再补. #include <cstdio> #include <cstring> const ...

  6. bzoj 2258 splay

    类似于1014,用splay维护这个序列,维护每个节点为根的子树的hash值,对于一个询问二分答案判断就行了. 反思:询问的时候因为是原序列的x,y,所以开始的时候直接splay(x-1)了,后来发现 ...

  7. Linux中source命令的用法

    source命令: source命令也称为“点命令”,也就是一个点符号(.).source命令通常用于重新执行刚修改的初始化文件,使之立即生效,而不必注销并重新登录.因为linux所有的操作都会变成文 ...

  8. java===java基础学习(4)---字符串操作

    java中的字符串操作和python中的大致相同,需要熟悉的就是具体操作形式. 关于具体api的使用,详见:java===字符串常用API介绍(转) package testbotoo; public ...

  9. java===字符串常用API介绍(转)

    本文转自:http://blog.csdn.net/crazy_kid_hnf/article/details/55102861 字符串基本操作 1.substring(from,end)(含头不含尾 ...

  10. java===java基础学习(1)---数据类型,运算,变量,常量

    今天起开始了java的学习之路,主要学习了数据类型和运算,变量,常量.基本和python有很多相通的地方,所以看起来很容易上手.下面是学习笔记! package testbotoo; public c ...