<!DOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title></title>
<script type="text/javascript" src="jquery.min.js"></script>
<script type="text/javascript"> //判断是否为质数------------------------------------------------------
function isPrime(n) { for (var i = n - 1; i > 1; i--) {
if (n % i == 0) {
return false;
}
}
return true; }
// --------------------------------------------------- //求出一个数(非质数)的质因数--------------------------------------------------------
function primeArray(n, array) {
array = new Array(); for (var i = 2; i < n; i++) {
//是否为质数
if (isPrime(i)) {
var temp_R = n % i;//余数
var temp_c = n / i;//商
//是否整除
if (temp_R == 0) { array.push(i); if (!isPrime(temp_c)) {
//商不为质数
array = array.concat(primeArray(temp_c, array)); } else {
array.push(temp_c); }
break;
}
} } return array; } // 查找两个数组的相同部分-----------------------------------
function findSamePart(a, b) {
var temp = new Array(); for (var i = 0; i < a.length; i++) { for (var j = 0; j < b.length; j++) {
if (a[i] == b[j]) {
temp.push(a[i]);
a.splice(i, 1);
b.splice(i, 1);
i =0; continue; } } } return temp; }
//--------------------------------------------------- // 分解质因数求最大公因数-----------------
function gcd(a, b) {
if (isPrime(a) || isPrime(b)) { return 1;
}
var a = parseInt($("#a").val());
var b = parseInt($("#b").val());
var a_array = new Array();
var b_array = new Array();
var a_array = primeArray(a, a_array);
var b_array = primeArray(b, b_array);
var temp = findSamePart(a_array, b_array);
var sum = 1;
for (var i = 0; i < temp.length; i++) {
sum = sum * temp[i]; } return sum; } </script> </head>
<body>
<div>
<h1>分解质因数法</h1>
<input type="number" id="a" placeholder="整数a"></br>
<input type="number" id="b" placeholder="整数b">
</br>
<input type="button" value="求最大公约数" onclick="demo();">
<script type="text/javascript">
function demo() { var a = $("#a").val();
var b = $("#b").val();
alert(a+"和"+b+"的最大公约数是"+gcd(a, b)); } </script>
</div> </body>
</html>

  

分解质因数法求最大公约数(javascrip实现)的更多相关文章

  1. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m

    给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...

  2. 欧几里得算法求最大公约数(gcd)

    关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } ...

  3. 欧几里得算法求最大公约数-《Algorithms Fourth Edition》第1章

    最大公约数(Greatest Common Divisor, GCD),是指2个或N个整数共有约数中最大的一个.a,b的最大公约数记为(a, b).相对应的是最小公倍数,记为[a, b]. 在求最大公 ...

  4. HDU-3240(卡特兰数+分解质因数后求逆元)

    卡特兰数相关公式 : \(H_n = {C_{2n}^n \over n+1)}\) \(H_n = {(4n-2)\over n+1}\times H_{n-1}\) \(H_n = C_{2n}^ ...

  5. 浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用

    一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约 ...

  6. 关于欧几里得算法求最大公约数,即OJ1029的参考解法

    #include <stdio.h> int main(int argc, char *argv[]) { int a,b,c; scanf("%d %d",& ...

  7. java求最大公约数(分解质因数)

    下面是四种用java语言编程实现的求最大公约数的方法: package gcd; import java.util.ArrayList; import java.util.List; public c ...

  8. 欧几里得求最大公约数--JAVA递归实现

    欧几里得算法求最大公约数算法思想: 求p和q的最大公约数,如果q=0,最大公约数就是p:否则,p除以q余数为r,p和q的最大公约数即q和r的最大公约数. java实现代码: public class ...

  9. NYOJ-476谁是英雄,分解质因子求约数个数!

    谁是英雄 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 十个数学家(编号0-9)乘气球飞行在太平洋上空.当横越赤道时,他们决定庆祝一下这一壮举.于是他们开了一瓶香槟.不 ...

随机推荐

  1. Item 5 避免创建不必要的对象

    场景一: 这个是经常出现的问题,因为我们经常误用String. public class Test { public static void main(String[] args) { //参数&qu ...

  2. NGINX: 配置 HSTS

    参考: [ 浅析 HSTS - 博客园 ] [ HTTP HSTS协议和 nginx - 运维生存时间] [ HSTS ] Header: Strict-Transport-Security Stri ...

  3. 多重部分和问题 (dp)

    题目描述 有n种不同大小的数字Ai,每种各Mi个.判断是否能从这些数字中选出若干个使它们的和恰好为K. 这个问题可以用DP求解,递推关系式的定义会影响最终的复杂度. 第一种定义: dp[i+1][j] ...

  4. 大聊Python----json与pickle数据序列化

    用于序列化的两个模块 ☆json,用于字符串和python数据类型间进行转换 ☆pickle,用于python特有的类型和python的数据类型间进行转换 Json模块提供了四个功能:dumps.du ...

  5. NodeJS中Buffer模块详解

    一,开篇分析 所谓缓冲区Buffer,就是 "临时存贮区" 的意思,是暂时存放输入输出数据的一段内存. JS语言自身只有字符串数据类型,没有二进制数据类型,因此NodeJS提供了一 ...

  6. Kaggle 数据挖掘比赛经验分享(转)

     原作者:陈成龙 简介 Kaggle 于 2010 年创立,专注数据科学,机器学习竞赛的举办,是全球最大的数据科学社区和数据竞赛平台.笔者从 2013 年开始,陆续参加了多场 Kaggle上面举办的比 ...

  7. java解析XML之DOM解析和SAX解析(包含CDATA的问题)

    Dom解析功能强大,可增删改查,操作时会将XML文档读到内存,因此适用于小文档: SAX解析是从头到尾逐行逐个元素解析,修改较为不便,但适用于只读的大文档:SAX采用事件驱动的方式解析XML.如同在电 ...

  8. Linux C中内联汇编的语法格式及使用方法(Inline Assembly in Linux C)【转】

    转自:http://www.linuxidc.com/Linux/2013-06/85221p3.htm 阅读Linux内核源码或对代码做性能优化时,经常会有在C语言中嵌入一段汇编代码的需求,这种嵌入 ...

  9. c++ 引用的分析

    在一般教材里面,我们会说引用是变量的别名,另外在 c++ primer 5里面说到引用的时候,说引用不是对象,不能对它进行取地址.但是我们来看看下面代码的分析: #include <iostre ...

  10. C中级 MariaDB Connector/C API 编程教程

    引言 - 环境搭建 首先开始环境搭建. 主要在Window 10 + Visual Studio 2015 上构建使用 mariadb connector/c api 进行数据操作开发. 为什么选择在 ...