本文,试图中一个干净的ubuntu14.04机器上安装caffe的cpu版本。

http://blog.csdn.net/sinat_35188997/article/details/73530434

http://caffe.berkeleyvision.org/installation.html

http://blog.csdn.net/zly_kemgine/article/details/78749764

首先卸载掉一些包:

卸载所有cuda有关的包:

apt-get remove --purge cuda-*

卸载掉所有nvidia有关的包:

apt-get remove --purge nvidia-*

卸载掉所有cudnn包:

apt-get remove --purge libcudnn*

卸载掉所有caffe包:

apt-get remove --purge caffe-*

卸载掉conda:

直接删除conda安装目录,然后在环境变量配置文件中删除旧路径即可http://blog.csdn.net/qq_22474567/article/details/54984257

然后使用dpkg -l|grep 或 dpkg -S 软件名 或 find 查看是否卸载干净

因为我是用的是什么都没有的干净的ubuntu系统,所以免去上面的步骤。

然后安装conda:

上官网下载.sh文件,运行,运行过程中配置一下安装目录,确认一下是否要加入环境变量即可,安装完成后重启terminal即可使用

对于caffe的依赖包有哪些,请参考Prerequisites:http://caffe.berkeleyvision.org/installation.html

然后安装openblas:

源码:https://github.com/xianyi/OpenBLAS

安装教程:http://www.tuicool.com/articles/vimi6v

下载openblas源码,解压,进入目录,

make

make完成后,根据输出中的提示,修改Makefile.rule文件中的prefix字段,设置安装目录,然后执行,

make install

(或者也可以直接执行 make PREFIX=安装路径 install 命令)

然后安装protobuf:

注意,caffe暂不支持protobuf3,我们一般选择安装protobuf 2.5.0

源码:https://github.com/google/protobuf

安装教程:http://blog.csdn.net/10km/article/details/53023527

http://blog.csdn.net/nyist327/article/details/49908891

http://blog.csdn.net/missdaddio/article/details/67631777

官方教程上说,直接

$ ./configure --prefix=安装路径
$ make -j16
$make check -j16
$ make install

但是,解压后发现没有configure文件,上网搜索后发现,需要先运行autogen.sh生成configure文件

运行autogen.sh,发现程序试图从一个被墙的网站上下载gtest-1.5.0.tar.bz2,因为机器不能FQ,所以无法下载。

查看autogen.sh的代码,发现下面这段代码:

于是手动下载googletest-release-1.5.0.zip,解压缩后,改名为gtest放在protobuf-2.5.0目录下

再次运行autogen.sh,再次出错

/autogen.sh: 40: autoreconf: not found

搜了一下,发现是因为缺包

解决办法: sudo apt-get install autoconf automake libtool

再次运行autogen.sh,成功生成configure,然后

$ ./configure --prefix=安装路径
$ make -j16
$make check -j16
$ make install

最后运行protoc命令,查看是否安装成功

然后,安装到anaconda中

export PATH=/HOME_ANACONDA_PATH/bin:PATH

#cd ./python
#python setup.py build
#python setup.py test
#python setup.py install

正确安装如图:

然后安装boost:

源码:http://www.boost.org/users/history/version_1_66_0.html(这里注意,不要用github上下载的zip,github上下载下来的zip不全,会报can't cd into ...错误)

教程:

./bootstrap.sh --prefix=/usr --with-python=/opt/anaconda2/bin/ --with-python-root=/opt/anaconda2/

./b2
./b2 install

然后安装glog

源码:https://github.com/google/glog/tree/v0.3.3

教程:

tar zxvf glog-0.3.3.tar.gz
cd glog-0.3.3
./configure ¨C-prefix=/usr
make && make install

然后安装gflags

源码:https://github.com/gflags/gflags

教程:

要先安装cmake:apt-get update & apt-get install cmake

cd gflags-master

mkdir build

cd build
export CXXFLAGS="-fPIC"
cmake -D CMAKE_INSTALL_PREFIX=/usr .. (这里注意最后的两个点,别漏了)
make VERBOSE=1
make
make install

然后安装hdf5

源码:https://support.hdfgroup.org/HDF5/release/obtainsrc518.html

教程:

tar -zxvf hdf5-1.8.3.tar.gz
$ ./configure --prefix=/usr
make
make check # run test suite.
make install
make check-install # verify installation.

然后安装snappy

源码:http://google.github.io/snappy/

教程:https://github.com/google/snappy/blob/master/README.md

cd google-snappy-4f7bd2d

mkdir build

cd build

(export CXXFLAGS='-fPIC')——这句后来被证明应该加上,以便在编译时产生share文件夹

cmake -D CMAKE_INSTALL_PREFIX=/usr ..

make

make install

然后安装opencv(这里注意一下,尽量编译安装opencv3。我尝试过直接用conda install opencv而不使用编译安装,结果在安装caffe时存在一些问题)

源码:https://github.com/opencv/opencv/tree/3.0.0

教程:https://www.cnblogs.com/kanuore/p/7587434.html(这个是给python3安装opencv的,2同理)

下载源码,解压,进入目录,发现是cmake的项目,故创建build文件夹并在其中cmake。

mkdir build

cd build

执行cmake命令,如下图:

发现报错,如下图,一开始进入CMakeError.log文件中查看,发现有错误提示提到ffmpeg等。以为是缺包,因此安装缺少的包:http://blog.csdn.net/zhang_shuai12/article/details/52289825

sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev

再次执行camke命令,还是报一样的错。

然后仔细阅读了错误提示中的内容,发现程序试图从一个被墙的网站下载ippicv_linux_20141027.tgz,下载不下来因此报错!

一定要仔细阅读错误提示!如果错误提示看不出什么的话再去看CMakeError.log文件。

根据上面的错误提示,查看3rdparty/ippicv/downloader.cmake文件,或者根据网上搜到的结果,发现需要手动下载ippicv_linux_20141027.tgz并放到指定位置(如下图)

于是从github上下载ippicv_linux_20141027.tgz,https://github.com/pkpp1233/ippicv,下载后解压得到所需压缩包,拷贝到指定文件夹中。

再次执行cmake命令,cmake通过,然后make,makeinstall,都成功了。

但是,因为我在cmake命令中指定了将opencv安装到anaconda中的python中,因此想要在python中看一下opencv是否安装成功

import cv2

结果import失败。这个包并没有被安装上。

回过头来思考,可能是cmake命令的选项出错了,因此仔细阅读了cmakelist,发现cmake命令中的的选项都在CMakeLists.txt中有解释,之前的cmake命令中好多选项写错了:

1、用ctrl查找,发现cublas是cuda的配置,应该不需要,去掉

2、查找之前输入的选项,发现有几个选项查找不出来,则说明是选项名字错了,比如PYTHON_EXECUTEABLE应该为PYTHON2_EXECUTEABLE,PYTHON_LIBRARY应为PYTHON2_LIBRARIES……逐个选项修复

错误的cmake命令:

得到正确的cmake命令:

删掉生成的/opt/opencv,删掉编译目录build,重新mkdir build,cd build,执行正确的cmake命令,make,make install。都通过了。

然后测试import cv2,成功。

总结:

cmake命令安装的时候一定要仔细阅读cmakelist.txt文件

然后安装lmdb

源码:https://github.com/LMDB/lmdb

教程:

git clone https://github.com/LMDB/lmdb
cd lmdb/libraries/liblmdb

打开makefile文件,修改prefix字段

make && make install

(或使用make install  DESTDIR=/root/_install_caffe_cpu/lmdb命令)

然后安装leveldb

源码:https://github.com/google/leveldb/tree/v1.10

教程:

解压,进入文件夹

make

make命令发现报错:

在github上发现了关于相似问题的讨论,只不过我们是snappy库报的错,它是gflags库报的错:https://github.com/BVLC/caffe/issues/2171

原来是当时安装snappy的时候应该先执行一句export CXXFLAGS='-fPIC',这样编译后才会生成share文件夹。

所以重新安装snappy:删除build文件夹,mkdir build,cd build,export CXXFLAGS='-fPIC',cmake -D CMAKE_INSTALL_PREFIX=/usr ..,make,make install

make install,发现报错,原来leveldb的工具包不支持make install(查看makefile文件,可以发现找不到install命令的定义)

所以需要手动将make出的.a和.so文件拷贝到/usr/lib下,将include文件夹拷贝到/usr/include下

最后,安装caffe:

解压,进入caffe-master,官方推荐使用make方式编译caffe,也可以使用cmake,这里我用make

复制一份Makefile.config.example,改名为Makefile.config

根据自己的需要,修改makefile.config,以下是我的配置:

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1不使用cudnn

# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1CPU版本

# uncomment to disable IO dependencies and corresponding data layers
USE_OPENCV := 1使用opencv
USE_LEVELDB := 1使用leveldb
USE_LMDB := 1使用lmdb

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3opencv 3.0.0

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
# CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr不使用cuda

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
#CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
# -gencode arch=compute_20,code=sm_21 \不使用cuda,全都注释掉
# -gencode arch=compute_30,code=sm_30 \
# -gencode arch=compute_35,code=sm_35 \
# -gencode arch=compute_50,code=sm_50 \
# -gencode arch=compute_52,code=sm_52 \
# -gencode arch=compute_60,code=sm_60 \
# -gencode arch=compute_61,code=sm_61 \
# -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas

BLAS := open使用openblas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /usr/includeopenblas安装路径为/usr,则配置其include和lib为/usr/include和/usr/lib
BLAS_LIB := /usr/lib

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := /opt/anaconda2关键!!使用自己安装的anaconda的python,配置自己安装的anaconda的位置,下同
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE:= /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1这个不知道开不开?先没开?

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/include /usr/local/include编译所用的库路径
LIBRARY_DIRS := $(PYTHON_LIB) /usr/lib /usr/local/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

修改完成后,

make all

make pycaffe

make test

然后将caffe源码目录中的python文件夹配置到PYTHONPATH这个环境变量里面去(如下图)←注意别漏了这一步

make方式编译的caffe不需要install,直接使用解压的这个文件夹里的东西

测试一下caffe:

测试一下pycaffe:

成功!

参考:

opencv3.0 + cuda 8.0 error
http://blog.csdn.net/yuehanliushuang/article/details/52116926

/*

#include "precomp.hpp"

-#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
+// GraphCut has been removed in NPP 8.0
+#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || (CUDART_VERSION >= 8000)

void cv::cuda::graphcut(GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::cuda::graphcut(GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }

*/

OpenBLAS install
http://www.tuicool.com/articles/vimi6v

Protobuf

Install protobuf 2.4.1
$ tar ¨Cxvf protobuf-2.4.1.tar.gz
$ cd protobuf-2.4.1
$ ./configure --prefix=/root/_install_caffe_cpu/protobuf-2.4.1
$ make -j16
$make check -j16
$ make install

export PATH=/HOME_ANACONDA_PATH/bin:PATH
#cd ./python
#python setup.py build
#python setup.py test
#python setup.py install

Boost

Install boost
./bootstrap.sh --prefix=/home/inf/web_demo/tools/_install_boost_1.58.0_anaconda/ --with-python=/home/inf/anaconda2/bin/ --with-python-root=/home/inf/anaconda2/
./b2
./b2 install

Install LMDB
git clone https://github.com/LMDB/lmdb
cd lmdb/libraries/liblmdb
make && make install DESTDIR=/root/_install_caffe_cpu/lmdb

Install glog-0.3.3
tar zxvf glog-0.3.3.tar.gz
cd glog-0.3.3
./configure ¨C-prefix=/root/_install_caffe_cpu/glog-0.3.3
make && make install

Install gflag
use master.zip

cd gflags-master
export CXXFLAGS="-fPIC"
cmake -D CMAKE_INSTALL_PREFIX=/root/_install_caffe_cpu/gflag .
make VERBOSE=1
make
make install

hdf5

tar -zxvf hdf5-1.8.3.tar.gz
$ ./configure --prefix=/usr/local/hdf5-1.8.3/
make
make check # run test suite.
make install
make check-install # verify installation.

snappy

http://blog.csdn.net/hairetz/article/details/18049257
1.去官网http://code.google.com/p/snappy/下载snappy-1.1.1.tar.gz安装包。

2.加压到指定目录
cd ~/snappy
tar -zxvf snappy-1.1.1.tar.gz
cd snappy-1.1.1
./configure -prefix=/home/tools/_install_snappy
make
make install

opencv 3
error:
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/opt/opencv -D PYTHON_INCLUDE_DIR=/opt/anaconda2/include/python2.7/ -D PYTHON_INCLUDE_DIR2=/opt/anaconda2/include/python2.7 -D PYTHON_EXECUTABLE=/opt/anaconda2/bin/python -D PYTHON_LIBRARY=/opt/anaconda2/lib/libpython2.7.so -D PYTHON_PACKAGES_PATH=/opt/anaconda2/lib/python2.7/site-packages/ -D BUILD_EXAMPLES=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D PYTHON2_LIBRARY=/opt/anaconda2/lib/libpython2.7.so -D BUILD_opencv_python3=OFF -D BUILD_opencv_python2=ON -D WITH_CUBLAS=1 ..
true:
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/opt/opencv -D PYTHON2_INCLUDE_DIR=/opt/anaconda2/include/python2.7/ -D PYTHON2_EXECUTABLE=/opt/anaconda2/bin/python2.7 -D PYTHON2_LIBRARIES=/opt/anaconda2/lib/libpython2.7.so -D PYTHON2_PACKAGES_PATH=/opt/anaconda2/lib/python2.7/site-packages/ -D BUILD_EXAMPLES=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D BUILD_opencv_python3=OFF -D BUILD_opencv_python2=ON ..

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/home/tools/_install_opencv_3.0_anaconda/ -D PYTHON_INCLUDE_DIR=/home/tools/anaconda2/include/python2.7/ -D PYTHON_INCLUDE_DIR2=/home/tools/anaconda2/include/python2.7 -D PYTHON_EXECUTABLE=/home/tools/anaconda2/bin/python -D PYTHON_LIBRARY=/home/tools/anaconda2/lib/libpython2.7.so -D PYTHON_PACKAGES_PATH=/home/tools/anaconda2/lib/python2.7/site-packages/ -D BUILD_EXAMPLES=ON -dBUILD_NEW_PYTHON_SUPPORT=ON -D PYTHON2_LIBRARY=/home/tools/anaconda2/lib/libpython2.7.so -D BUILD_opencv_python3=OFF -D BUILD_opencv_python2=ON -D WITH_CUBLAS=1 ..

sudo route add -net 172.17.0.0/17 gw 192.168.43.1
sudo route del -net 172.17.0.0/23 gw 192.168.43.1

ubuntu14.04 编译安装CPU版caffe的更多相关文章

  1. Ubuntu14.04编译安装mysql5.6.26

    Ubuntu14.04编译安装mysql5.6.26 (1)安装编译源码需要的包 sudo apt-get install make cmake gcc g++ bison libncurses5-d ...

  2. ubuntu安装cpu版caffe

    最近在笔记本上配置了ubuntu14.04,并配置了caffe,整个过程大概花了2个小时. 希望在安装时能给大家一个启发,这里配置的是无gpu版的,因为我的笔记本时核心显卡,配置gpu版的要编译cud ...

  3. ubuntu14.04 编译安装highpoint rocketraid 2720驱动

    highpoint官方只有ubuntu12.10驱动,对于ubuntu14.04或者12.04,需要手工编译安装驱动. 基本步骤: 1.下载rocketraid 2720驱动源代码 2.在一台装有ub ...

  4. ubuntu14.04 编译安装gcc-5.3.0

    最近编译个源码,要求对C++14的支持了,就GCC的编译安装最新的5.3.0,整个过程以root用户进行. 1.下载GCC源码,属于事后文档整理,已经不知道从哪下载了. 2.解压:tar -zxvf ...

  5. ubuntu14.04编译安装Git2.7

    在开源中国看文章, 随意之间, 在软件资讯栏看到git 2.7的信息. 一直在使用在git 1.9.1, 心中突感, 这个git 2.7是个什么东西, 怎么git的版本更新有如此快么. 印象里, 老外 ...

  6. [译]How to Install Node.js on Ubuntu 14.04 如何在ubuntu14.04上安装node.js

    原文链接为 http://www.hostingadvice.com/how-to/install-nodejs-ubuntu-14-04/ 由作者Jacob Nicholson 发表于October ...

  7. Ubuntu14.04下安装Libsvm,并使用Libsvm

    (1)Ubuntu14.04下安装Libsvm 转载:https://blog.csdn.net/katrinawj/article/details/78915874 一.下载: 网址:http:// ...

  8. ubuntu14.04下安装ffmpeg

    ubuntu14.04下安装ffmpeg 一.安装各种依赖包 1.yasm(libx264需要依赖yasm) sudo apt-get install yasm 2.libx264 sudo apt- ...

  9. ubuntu 13.04编译安装xen4.4总结

    之前在ubuntu14.04上安装xen4.4失败,提示编译有问题,这次换了成了ubuntu13.04进行安装,成功完成xen4.4的安装 1. 安装环境 操作系统:ubuntu13.04 xen版本 ...

随机推荐

  1. Linux之手动设置IP地址

    一.引言 有时候我们装好了机器却发现网络没有设置,而服务器的机器一般都是没有界面的,那么该如何设置IP呢? 二.步骤 root用户,#vi /etc/sysconfig/network-scripts ...

  2. [转]Linux(Ubuntu)下如何安装JDK

    转自:http://www.cnblogs.com/savagemorgan/p/3650926.html 注:这篇博客里面有两个问题 1.解压的时候不用sudo,mv的时候不用sudo,我的安装路径 ...

  3. ImageTag小案例

    其实不使用ImageIO,就是用一般的BufferedOutputStream+byte[] buffer也可以 关键在于通过response设置页面的MIME Type,自行Google~~~ 源代 ...

  4. iOS swift 富文本显示 富文本在iOS中使用场景和解决方案

    项目中很多地方都会用到富文本的内容:比如一般的商品详情,视频详情,资讯详情等,运营人员通过后台的富文本编辑器编辑的内容,前端拿到的就是一段富文本的字符串,这富文本大多都是图片和文字的组合.我们今天介绍 ...

  5. VS2017 Use Git Push To TFS2018 Failure

    先上图: 提示信息很明确,认证失败!! 在使用TFS2018 建立Git Repo 的时候,有一句提示,如果遇到权限问题,请升级Git,我本地Git已经是最新版本,并且在环境变量中,如下图 经过分析觉 ...

  6. C++ 类模板二(类模版与友元函数)

    //类模版与友元函数 #include<iostream> using namespace std; template<typename T> class Complex{ p ...

  7. HashMap和Hashtable的区别?

    HashMap和Hashtable的区别? 解答:HashMap是Hashtable的轻量级实现(非线程安全的实现),他们都实现了Map接口,主要区别 在于HashMap允许空(null)键值(key ...

  8. JavaWeb——过滤器

    过滤器简介 WEB过滤器是一个服务器端的组件,它可以截取用户端的请求与相应信息,并对这些信息过滤. 过滤器的工作原理和生命周期 在没有Web过滤器的情况下,用户直接访问服务器上的Web资源.但是如果存 ...

  9. 【C++自我精讲】基础系列三 重载

    [C++自我精讲]基础系列三 重载 0 前言 分二部分:函数重载,操作符重载. 1 函数重载 函数重载:指在同一名字空间中,函数名称相同,参数类型.顺序或数量不同的一类函数,同一函数名的函数能完成不同 ...

  10. 开发人员需知的Web缓存知识(转)

    什么是Web缓存,为什么要使用它? 缓存的类型: 浏览器缓存: 代理服务器缓存: 网关缓存: Web缓存无害吗?为什么要鼓励缓存? Web缓存如何工作 如何控制缓存和不缓存: HTML Meta标签 ...