【BZOJ3144】[Hnoi2013]切糕

Description

Input

第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。 
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。

Output

仅包含一个整数,表示在合法基础上最小的总不和谐值。

Sample Input

2 2 2
1
6 1
6 1
2 6
2 6

Sample Output

6

HINT

最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1

题解:APIO上学到了这种建图方法,赶紧%一发

先不考虑D的限制,那么原题就是无脑最小割,图大概长这样(只考虑两个纵轴)

但如果加上这条限制,我们该怎么做?这里先给出结论,假设D=1,从7->2连一条∞的边,从3->6连一条∞的边(其余同理),原图变成了这样

(画图软件有点尴尬~)

发现如果这样连边,我们就可以防止(1,2)与(7,8)同时被割掉,因为就算割掉这两条边,S仍然可以通过5-6-3-4与T联通,所以只能割别的边

一开始我比较懒,省略了S->1,4->T这两条长度为∞的边,结果狂WA不止,后来发现R可以等于1。。。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#define P(A,B,C) ((C-1)*n*m+(B-1)*n+A)
using namespace std;
const int maxm=1000000;
const int maxn=100010;
queue<int> q;
int n,m,h,S,T,D,cnt,ans;
int to[maxm],next[maxm],val[maxm],head[maxn],d[maxn];
int dx[]={1,0,-1,0},dy[]={0,1,0,-1};
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int bfs()
{
memset(d,0,sizeof(d));
while(!q.empty()) q.pop();
int i,u;
d[S]=1,q.push(S);
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dfs(int x,int mf)
{
if(x==T) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int main()
{
n=rd(),m=rd(),h=rd(),D=rd();
memset(head,-1,sizeof(head));
int i,j,k,l;
S=0,T=n*m*h+1;
for(k=1;k<=h;k++)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(k==1) add(S,P(i,j,k),rd());
else add(P(i,j,k-1),P(i,j,k),rd());
if(k==h) add(P(i,j,k),T,1<<30);
if(k>D) for(l=0;l<4;l++) if(i+dx[l]&&i+dx[l]<=n&&j+dy[l]&&j+dy[l]<=m)
add(P(i,j,k),P(i+dx[l],j+dy[l],k-D),1<<30);
}
}
}
while(bfs()) ans+=dfs(S,1<<30);
printf("%d",ans);
return 0;
}

【BZOJ3144】[Hnoi2013]切糕 最小割的更多相关文章

  1. bzoj3144 [HNOI2013]切糕(最小割)

    bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...

  2. BZOJ3144[Hnoi2013]切糕——最小割

    题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

  3. 【BZOJ-3144】切糕 最小割-最大流

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1261  Solved: 700[Submit][Status] ...

  4. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  5. Luogu P3227 [HNOI2013]切糕 最小割

    首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...

  6. bzoj 3144 [Hnoi2013]切糕——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...

  7. BZOJ3144 Hnoi2013 切糕 【网络流】*

    BZOJ3144 Hnoi2013 切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的 ...

  8. BZOJ3144 [Hnoi2013]切糕 【最小割】

    题目 输入格式 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

  9. BZOJ3144/LG3227 「HNOI2013」切糕 最小割离散变量模型

    问题描述 BZOJ3144 LG3227 还想粘下样例 输入: 2 2 2 1 6 1 6 1 2 6 2 6 输出: 6 题解 关于离散变量模型,我不想再抄一遍,所以: 对于样例,可以建立出这样的图 ...

随机推荐

  1. ubuntu下创建.net core时出现 Failed to create prime the NuGet cache

    https://docs.microsoft.com/en-us/aspnet/core/getting-started 根据微软给出的文档运行第一个web程序出现错误 Failed to creat ...

  2. AOP - PostSharp 2.0

    PostSharp是一个非常优秀的AOP框架,使用上非常方便,功能强大,对目标拦截的方法不需要做什么修改,但现在已经商业化运作从PostSharp官方网站下载一个试用版,安装 简单示例PostShar ...

  3. VS2015 经常不出现智能提示,代码颜色也没有了

    重置下.开始菜单 -->所有程序-->Visual Studio 文件夹 --> Visual Studio Tools --> Developer Command Promp ...

  4. 에러 처리 HandleErrorAttribute

    ExceptionInfo info = new ExceptionInfo(); info.Success = false; info.Message = filterContext.Excepti ...

  5. 手动安装minGW

    minGW是C语言编译包,将GCC编译器在Windows平台上编译软件提供支持. 手工安装minGW是一件很繁琐的事情,但是搞懂它很有用,因为C语言本身是一个很小的语法系统,全靠 各种库在支持,安装m ...

  6. MVC页面跳转,路径重复的问题

    window.location.replace("../Home/xxx") 这是js路径跳转的示范,如果普通超链接也一样 前面加一个../

  7. 【转】Cocos2d-x 3.1.1 学习日志6--30分钟了解C++11新特性

    [转]Cocos2d-x 3.1.1 学习日志6--30分钟了解C++11新特性 Cocos2d-x 3.1.1 学习日志6--30分钟了解C++11新特性

  8. 安全DNS

    国内首家云安全DNS:(114DNS)114.114.114.114114.114.115.115 将 DNS 地址设为114.114.114.119 和 114.114.115.119 ,拦截钓鱼病 ...

  9. Jquery学习笔记(4)--checkbox全选反选

    可能有浏览器兼容性,注意html里的checked是一个属性,存在就默认选中. <!DOCTYPE html> <html lang="en"> <h ...

  10. android怎样写一个自己定义的dialog能够在Title的位置弹出来

    先上效果图: Title的Layout为: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/andr ...