【BZOJ2194】快速傅立叶之二
【BZOJ2194】快速傅立叶之二
Description
请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
Input
Output
输出N行,每行一个整数,第i行输出C[i-1]。
Sample Input
3 1
2 4
1 1
2 4
1 4
Sample Output
12
10
6
1
题解:如果我们将b数组反转,原式就变成了a[i]*b[n-i+k-1],发现满足卷积的形式,直接上FFT
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#define pi acos(-1.0)
using namespace std;
struct cp
{
double x,y;
cp (double a,double b){x=a,y=b;}
cp (){}
cp operator +(cp a) const {return cp(x+a.x,y+a.y);}
cp operator -(cp a) const {return cp(x-a.x,y-a.y);}
cp operator *(cp a) const {return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}n1[1<<20],n2[1<<20];
int ans[1<<20],n;
long long sum;
void init(cp *a,int len)
{
int i,j,t=0;
for(i=0;i<len;i++)
{
if(i>t) swap(a[i],a[t]);
for(j=(len>>1);(t^=j)<j;j>>=1);
}
}
void FFT(cp *a,int len,int f)
{
init(a,len);
int i,j,k,h;
cp u;
for(h=2;h<=len;h<<=1)
{
cp wn=cp(cos(f*2*pi/h),sin(f*2*pi/h));
for(j=0;j<len;j+=h)
{
cp w(1,0);
for(k=j;k<j+h/2;k++)
{
u=w*a[k+h/2],a[k+h/2]=a[k]-u,a[k]=a[k]+u,w=w*wn;
}
}
}
}
void work(cp *a,cp *b,int len)
{
FFT(a,len,1),FFT(b,len,1);
for(int i=0;i<len;i++) a[i]=a[i]*b[i];
FFT(a,len,-1);
for(int i=0;i<len;i++) ans[i]=int(a[i].x/len+0.5);
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,a,b,len=1;
while(len<2*n) len<<=1;
for(i=0;i<n;i++)
{
a=rd(),b=rd();
n1[i].x=a*1.0,n2[n-i-1].x=b*1.0;
}
work(n1,n2,len);
for(i=n-1;i<2*n-1;i++) printf("%d\n",ans[i]);
return 0;
}
【BZOJ2194】快速傅立叶之二的更多相关文章
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- [bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...
- BZOJ2194:快速傅立叶之二(FFT)
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- bzoj2194: 快速傅立叶之二
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- 2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...
- bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...
- BZOJ2194: 快速傅立叶之二(NTT,卷积)
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1776 Solved: 1055[Submit][Status][Discuss] Descript ...
- BZOJ2194 快速傅立叶之二 【fft】
题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...
- BZOJ2194: 快速傅立叶之二 FFT_卷积
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
随机推荐
- iOS触摸事件哦
主要是记录下iOS的界面触摸事件处理机制,然后用一个实例来说明下应用场景. 一.处理机制 界面响应消息机制分两块,(1)首先在视图的层次结构里找到能响应消息的那个视图.(2)然后在找到的视图里处理消息 ...
- unity3d移动及键鼠状态
gameObject的transform属性可以进行位置.旋转.大小的设置 位置:position,Translate(),位置的移动 旋转:rotate 大小:localScale Vector3内 ...
- convertView与ViewHolder有什么区别,好处在哪里
convertView 在API中的解释是The old view to reuse, if possible, 第一次getView时还没有convertView,这时你便创建了一个新的vi ...
- Win7下更改iTunes备份路径最便捷的方法
① 先删除C:\Users\你的用户名\AppData\Roaming\Apple Computer里的 MobileSync文件夹(首次安装iTunes要先运行一次itunes,才有这个文件夹,如果 ...
- 基于maven的ssh框架一步一步搭建(一)
一.新建maven项目,配置ssh框架pom的最低支持 1.新建一个maven项目 2.添加一个web.xml ? 1 2 3 4 5 6 7 8 9 <?xml version="1 ...
- 【项目总结】:怎样做一个牛逼的Team leader?
随着ITOO高校云平台3.1项目的结束,我们各种各样的总结也被提上了日程. Java版本号的全部开发者和Donet版本号的全部开发者坐在一起进行了关于项目开发管理的头脑风暴,尽管我仅仅是Donet开发 ...
- 140726暑期培训.txt
1. 输入多组数据的时候 while(scanf("%s",s)!=EOF) while(gets(s)!=NULL) 用gets和scanf不 ...
- python-hanoi
#!/usr/bin/env python #-*- coding:utf-8 -*- ############################ #File Name: hanoi.py #Autho ...
- python学习之time模块
time.time() 将时间作为浮点数返回. 在Windows和大多数Unix系统上,时代是1970年1月1日00:00:00(UTC),并且闰秒不计入从时代开始的秒数. >>> ...
- h5-文本框
h5-文本框 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...