storm 入门原理介绍_AboutYUN
转自:http://www.aboutyun.com/thread-7394-1-1.html
了解Storm:http://www.aboutyun.com/thread-9547-1-2.html
问题导读:
1.hadoop有master与slave,Storm与之对应的节点是什么?
2.Storm控制节点上面运行一个后台程序被称之为什么?
3.Supervisor的作用是什么?
4.Topology与Worker之间的关系是什么?
5.Nimbus和Supervisor之间的所有协调工作有master来完成,还是Zookeeper集群完成?
6.storm稳定的原因是什么?
7.如何运行Topology?
strom jar all-your-code.jar backtype.storm.MyTopology arg1 arg2
8.spout是什么?
9.bolt是什么?
10.Topology由两部分组成?
11.stream grouping有几种?
Storm对于实时计算的的意义相当于Hadoop对于批处理的意义。Hadoop为我们提供了Map和Reduce原语,使我们对数据进行批处理变的非常的简单和优美。同样,Storm也对数据的实时计算提供了简单Spout和Bolt原语。
Storm适用的场景:
1、流数据处理:Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中。
2、分布式RPC:由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用。
1、准备工作
2、一个Storm集群的基本组件
3、Topologies
- strom jar all-your-code.jar backtype.storm.MyTopology arg1 arg2
复制代码
-based语言提交的最简单的方法, 看一下文章: 在生产集群上运行topology去看看怎么启动以及停止topologies。
4、Stream
<ignore_js_op>
<ignore_js_op>
<ignore_js_op>
5、数据模型(Data Model)
<ignore_js_op>
<ignore_js_op>
- publicclassDoubleAndTripleBoltimplementsIRichBolt {
- privateOutputCollectorBase _collector;
- @Override
- publicvoidprepare(Map conf, TopologyContext context, OutputCollectorBase collector) {
- _collector = collector;
- }
- @Override
- publicvoidexecute(Tuple input) {
- intval = input.getInteger(0);
- _collector.emit(input,newValues(val*2, val*3));
- _collector.ack(input);
- }
- @Override
- publicvoidcleanup() {
- }
- @Override
- publicvoiddeclareOutputFields(OutputFieldsDeclarer declarer) {
- declarer.declare(newFields("double","triple"));
- }
- }
复制代码
- TopologyBuilder builder =newTopologyBuilder();
- builder.setSpout(1,newTestWordSpout(),10);
- builder.setBolt(2,newExclamationBolt(),3)
- .shuffleGrouping(1);
- builder.setBolt(3,newExclamationBolt(),2)
- .shuffleGrouping(2);
复制代码
- builder.setBolt(3,newExclamationBolt(),5)
- .shuffleGrouping(1)
- .shuffleGrouping(2);
复制代码
让我们深入地看一下这个topology里面的spout和bolt是怎么实现的。Spout负责发射新的tuple到这个topology里面来。TestWordSpout从["nathan", "mike", "jackson", "golda", "bertels"]里面随机选择一个单词发射出来。TestWordSpout里面的nextTuple()方法是这样定义的:
- publicvoidnextTuple() {
- Utils.sleep(100);
- finalString[] words =newString[] {"nathan","mike",
- "jackson","golda","bertels"};
- finalRandom rand =newRandom();
- finalString word = words[rand.nextInt(words.length)];
- _collector.emit(newValues(word));
- }
复制代码
- publicstaticclassExclamationBoltimplementsIRichBolt {
- OutputCollector _collector;
- publicvoidprepare(Map conf, TopologyContext context,
- OutputCollector collector) {
- _collector = collector;
- }
- publicvoidexecute(Tuple tuple) {
- _collector.emit(tuple,newValues(tuple.getString(0) +"!!!"));
- _collector.ack(tuple);
- }
- publicvoidcleanup() {
- }
- publicvoiddeclareOutputFields(OutputFieldsDeclarer declarer) {
- declarer.declare(newFields("word"));
- }
- }
复制代码
让我们看看怎么以local mode运行ExclamationToplogy。
- Config conf =newConfig();
- conf.setDebug(true);
- conf.setNumWorkers(2);
- LocalCluster cluster =newLocalCluster();
- cluster.submitTopology("test", conf, builder.createTopology());
- Utils.sleep(10000);
- cluster.killTopology("test");
- cluster.shutdown();
复制代码
- TOPOLOGY_WORKERS(setNumWorkers) 定义你希望集群分配多少个工作进程给你来执行这个topology. topology里面的每个组件会被需要线程来执行。每个组件到底用多少个线程是通过setBolt和setSpout来指定的。这些线程都运行在工作进程里面. 每一个工作进程包含一些节点的一些工作线程。比如, 如果你指定300个线程,60个进程, 那么每个工作进程里面要执行6个线程, 而这6个线程可能属于不同的组件(Spout, Bolt)。你可以通过调整每个组件的并行度以及这些线程所在的进程数量来调整topology的性能。
- TOPOLOGY_DEBUG(setDebug), 当它被设置成true的话, storm会记录下每个组件所发射的每条消息。这在本地环境调试topology很有用, 但是在线上这么做的话会影响性能的。
Worker processes(进程)
Executors (threads)(线程)
Tasks
7、流分组策略(Stream grouping)
<ignore_js_op>
- TopologyBuilder builder =newTopologyBuilder();
- builder.setSpout(1,newRandomSentenceSpout(),5);
- builder.setBolt(2,newSplitSentence(),8)
- .shuffleGrouping(1);
- builder.setBolt(3,newWordCount(),12)
- .fieldsGrouping(2,newFields("word"));
复制代码
- 最简单的grouping是shuffle grouping, 它随机发给任何一个task。上面例子里面RandomSentenceSpout和SplitSentence之间用的就是shuffle grouping, shuffle grouping对各个task的tuple分配的比较均匀。
- 一种更有趣的grouping是fields grouping, SplitSentence和WordCount之间使用的就是fields grouping, 这种grouping机制保证相同field值的tuple会去同一个task, 这对于WordCount来说非常关键,如果同一个单词不去同一个task, 那么统计出来的单词次数就不对了。
l ShuffleGrouping:随机选择一个Task来发送。
l FiledGrouping:根据Tuple中Fields来做一致性hash,相同hash值的Tuple被发送到相同的Task。
l AllGrouping:广播发送,将每一个Tuple发送到所有的Task。
l GlobalGrouping:所有的Tuple会被发送到某个Bolt中的id最小的那个Task。
l NoneGrouping:不关心Tuple发送给哪个Task来处理,等价于ShuffleGrouping。
l DirectGrouping:直接将Tuple发送到指定的Task来处理。
8、使用别的语言来定义Bolt
- publicstaticclassSplitSentenceextendsShellBoltimplementsIRichBolt {
- publicSplitSentence() {
- super("python","splitsentence.py");
- }
- publicvoiddeclareOutputFields(OutputFieldsDeclarer declarer) {
- declarer.declare(newFields("word"));
- }
- }
复制代码
SplitSentence继承自ShellBolt并且声明这个Bolt用python来运行,并且参数是: splitsentence.py。下面是splitsentence.py的定义:
- importstorm
- classSplitSentenceBolt(storm.BasicBolt):
- defprocess(self, tup):
- words=tup.values[0].split(" ")
- forwordinwords:
- storm.emit([word])
- SplitSentenceBolt().run()
复制代码
9、可靠的消息处理
storm 入门原理介绍_AboutYUN的更多相关文章
- storm 入门原理介绍
1.hadoop有master与slave,Storm与之对应的节点是什么? 2.Storm控制节点上面运行一个后台程序被称之为什么? 3.Supervisor的作用是什么? 4.Topology与W ...
- (转发)storm 入门原理介绍
1.hadoop有master与slave,Storm与之对应的节点是什么? 2.Storm控制节点上面运行一个后台程序被称之为什么?3.Supervisor的作用是什么?4.Topology与Wor ...
- storm入门原理介绍
转自:http://www.cnblogs.com/wuxiang/p/5629138.html 1.hadoop有master与slave,Storm与之对应的节点是什么?2.Storm控制节点上面 ...
- storm原理介绍
目录 storm原理介绍 一.原理介绍 二.配置 三.并行度 (一)storm拓扑的并行度可以从以下4个维度进行设置: (二)并行度的设置方法 (三)示例 四.分组 五.可靠性 (一)spout (二 ...
- 《Storm入门》中文版
本文翻译自<Getting Started With Storm>译者:吴京润 编辑:郭蕾 方腾飞 本书的译文仅限于学习和研究之用,没有原作者和译者的授权不能用于商业用途. 译者序 ...
- Kylin系列之二:原理介绍
Kylin系列之二:原理介绍 2018年4月15日 15:52 因何而生 Kylin和hive的区别 1. hive主要是离线分析平台,适用于已经有成熟的报表体系,每天只要定时运行即可. 2. Kyl ...
- Apache Storm内部原理分析
转自:http://shiyanjun.cn/archives/1472.html 本文算是个人对Storm应用和学习的一个总结,由于不太懂Clojure语言,所以无法更多地从源码分析,但是参考了官网 ...
- kafka集群原理介绍
目录 kafka集群原理介绍 (一)基础理论 二.配置文件 三.错误处理 kafka集群原理介绍 @(博客文章)[kafka|大数据] 本系统文章共三篇,分别为 1.kafka集群原理介绍了以下几个方 ...
- storm入门demo
一.storm入门demo的介绍 storm的入门helloworld有2种方式,一种是本地的,另一种是远程. 本地实现: 本地写好demo之后,不用搭建storm集群,下载storm的相关jar包即 ...
随机推荐
- The WebSocket Protocol
[Docs] [txt|pdf] [draft-ietf-hybi-t...] [Diff1] [Diff2] [Errata] Updated by: 7936 PROPOSED STANDAR ...
- vc 获取函数名称真实地址
首先写一个很简单的main函数: int main(){ printf("main的地址(?):%08x",main); } 单步调试,可得知 main函数的真实入口地址是:00b ...
- list/tuple/dict/set
一.list(列表) 内置类型,长度可变的有序集合,索引从0开始,索引为负数是标识从右开始取,最右边第一个是-1,以此类推.里面的元素可以是不同类型的. 1.定义:a = [] #空列表 2.获取长度 ...
- vim 中Taglist的安装和使用
将vim 改造成功能强大的IDE系列之二 『插件介绍』 Taglist是vim的一个插件,提供源代码符号的结构化视图. 效果图:(直接使用了别人的图片.在我机器上也差不多-) 『下载和安装』 1)从h ...
- 【DB2】在使用EXISTS时,查询结果中包含聚合函数,一个不注意就会犯错的坑
需求描述 现在需要通过EXISTS中的语句来控制查询结果是否存在 第一次实现SQL SELECT 1 AS ID,SUM(1) FROM (SELECT ID,NAME FROM (VALUES(1, ...
- java数据库编程:使用元数据分析数据库
databaseMetaData 使用元数据可以分析数据库基本信息,包括版本,数据库名称,或者指定表的主键. 代码实例 package 类集; import java.sql.Connection ; ...
- hibernate 联合主键
xml方式处理联合主键: 以有两个主键:id和name的student表为例. 先创建个主键类: package com.bjsxt.hibernate; //黑色为必写项 public ...
- struts 类型转换器
类型转换 (来自尚学堂) a) 默认转换 i. 日期处理 b) 写自己的转换器: public class MyPointConverter extends Defau ...
- iOS开发一个制作Live Photo的工具
代码地址如下:http://www.demodashi.com/demo/13339.html 1.livePhoto简介 livePhoto是iOS 9.0 之后系统相机提供的拍摄动态照片的功能,但 ...
- RPM卸载
安全地卸载 rpm卸载软件包,并不是简单地将原来安装的文件逐个删除,那样做的话,可能会出现这样或那样的问题.如,a软件包依靠b软件包做某些工作,若b软件包卸载了,则a软件包就不能正常运行了.rpm为用 ...