洛谷题目链接:[AHOI2009]中国象棋

题目描述

这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!

输入输出格式

输入格式:

一行包含两个整数N,M,之间由一个空格隔开。

输出格式:

总共的方案数,由于该值可能很大,只需给出方案数模9999973的结果。

输入输出样例

输入样例#1:

1 3

输出样例#1:

7

说明

样例说明

除了3个格子里都塞满了炮以外,其它方案都是可行的,所以一共有222-1=7种方案。

数据范围

100%的数据中N和M均不超过100

50%的数据中N和M至少有一个数不超过8

30%的数据中N和M均不超过6


一句话题意: 一个矩阵中填入一些炮,使得任意两个炮不能互相打到.


题解: 如果玩过象棋就会知道,一行最多只能放入两个炮.看这个数据范围,可以想到DP.

那么该如何设置状态呢?

一开始我有个错误的思路,我用\(f[i][j][k][l]\)表示到第\(i\)行第\(j\)列的位置,在第\(i\)行放了\(k\)个炮,第\(j\)行放了\(l\)个炮,\((k,l \in [0,2])\).但是这样显然是错误的.因为有些状态是重复的,那么在统计答案的时候就无法计算总数.

那么该如何改进呢?

显然什么棋子放入格子的时间与最终答案是没有影响的,最后的答案只和棋子放在哪些位置有关.但是这个位置事实上也是只需要用来考虑合法方案数的,也就是说我并不需要知道每个炮具体是放在哪个位置,我只需要知道这一行还能够放入几个来对答案作贡献.

我们设状态\(f[i][j][k]\)表示到第\(i\)行,有\(j\)列放了1个棋子,有\(k\)列放了2个棋子.那么在新枚举一行的时候,就会有这样的情况:

  • 这一行不放棋子.
  • 放一个棋子放在没有棋子的一列.
  • 放一个棋子放在已经放了一个棋子的一列.
  • 放两个棋子都放在没有棋子的两列.
  • 放一个棋子在没有棋子的一列,再放一个棋子放在有一个棋子的一列.
  • 两个棋子都放在有一个棋子的一列.

那么这些状态都是可以对当前这一行的答案做出贡献的,在枚举的时候把这些状态都加进来就可以了.

#include<bits/stdc++.h>
using namespace std;
const int N=100+5;
const int yyj=9999973;
typedef int _int;
#define int long long int n, m, f[N][N][N], ans = 0; _int main(){
ios::sync_with_stdio(false);
cin >> n >> m; f[0][0][0] = 1; for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
for(int k=0;j+k<=m;k++){
(f[i][j][k] += f[i-1][j][k]) %= yyj;
if(j) (f[i][j][k] += f[i-1][j-1][k]*(m-k-j+1)) %= yyj;
if(k) (f[i][j][k] += f[i-1][j+1][k-1]*(j+1)) %= yyj;
if(j >= 2) (f[i][j][k] += f[i-1][j-2][k]*(m-j-k+2)*(m-j-k+1)/2) %= yyj;
if(k >= 2) (f[i][j][k] += f[i-1][j+2][k-2]*(j+2)*(j+1)/2) %= yyj;
if(k) (f[i][j][k] += f[i-1][j][k-1]*(m-j-k+1)*j) %= yyj;
} for(int i=0;i<=m;i++)
for(int j=0;j<=m;j++)
(ans += f[n][i][j]) %= yyj;
cout << ans << endl;
return 0;
}

[洛谷P2051] [AHOI2009]中国象棋的更多相关文章

  1. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  2. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  3. 洛谷 P2051 [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  4. 洛谷P2051 [AHOI2009]中国象棋(dp)

    题面 luogu 题解 \(50pts:\)显然是\(3\)进制状压\(dp\) \(100pts:\) 一行一行地考虑 \(f[i][j][k]\)表示前\(i\)行,有\(j\)列放了一个,有\( ...

  5. 洛谷P2051 [AHOI2009] 中国象棋(状压dp)

    题目简介 n*m的棋盘,对每行放炮,要求每行每列炮数<=2,求方案数%9999973 N,M<=100 题目分析 算法考虑 考虑到N,M范围较小,每一行状态只与前面的行状态有关,考虑状压D ...

  6. BZOJ1801或洛谷2051 [AHOI2009]中国象棋

    BZOJ原题链接 洛谷原题链接 这题挺难想状态的,刚看题感觉是状压,但数据\(100\)显然不可能. 注意到每行每列只能放\(0\sim 2\)个棋子,所以我们可以将这个写入状态. 设\(f[i][j ...

  7. 洛谷.2051.[AHOI2009]中国象棋(DP)

    题目链接 /* 每行每列不能超过2个棋子,求方案数 前面行对后面行的影响只有 放了0个.1个.2个 棋子的列数,与排列方式无关 所以设f[i][j][k]表示前i行,放了0个棋子的有j列,放了1个棋子 ...

  8. 洛谷2051 [AHOI2009]中国象棋

    题目链接 题意概述:n行m列棋盘放若干个棋子每行每列最多两个求方案总数,答案对9999973取模. 可以比较容易看出这是个dp,设f[i][j][k]表示前i行j列放1个棋子k列放2个棋子的方案总数. ...

  9. Luogu P2051 [AHOI2009]中国象棋(dp)

    P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...

随机推荐

  1. Redis 错误摘记篇

    yum安装的redis提示如下报错,大概意思就是配置文件和redis-server进程文件版本不一致.. [root@vm-10-104-28-24 yum.repos.d]# redis-serve ...

  2. android4.3 Bluetooth分析之扫描分析

    android4.3中引入了蓝牙低能耗le(low energy),相应的也有一些方法/类.不过代码里,并没有找到初始调用的地方.所以这里还是先只分析下bt普通的扫描流程(类似android 4.2) ...

  3. windows编程入门最重要的

    要入门 Windows 编程,最重要的不是阅读什么教材,使用什么工具,而是先必须把以下几个对于初学者来说非常容易困惑的重要概念搞清楚: 1. 文字的编码和字符集.这部分需要掌握 ANSI 模式和 Un ...

  4. Alpha发布-----欢迎来怼团队

    欢迎来怼项目小组—Alpha发布展示 一.小组成员 队长:田继平 成员:葛美义,王伟东,姜珊,邵朔,冉华 ,李圆圆 二.文案+美工展示 链接:http://www.cnblogs.com/wwd199 ...

  5. Thunder团队第一周 - Scrum会议2

    Scrum会议2 小组名称:Thunder 项目名称:待定 Scrum Master:李传康 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传康(M ...

  6. 第三次寒假作业 sketch 了解

    什么是sketch? sketch 是一种基于散列的数据结构,可以在高速网络环境中,实时地存储流量特征信息,只占用较小的空间资源,并且具备在理论上可证明的估计精度与内存的平衡特性. 通过设置散列函数, ...

  7. 关于&$地址传递的练习

    php默认为传值传递: 既: $a=10;$b=$a; //$b为10$a=+10; //$a 为20 echo $a.'和'.$b;  # $a is 20 and $b is 10! 要是想变为地 ...

  8. centos设置时间同步

    1.安装ntpdate #yum install ntpdate   2. #cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime #ntpdate ...

  9. C# 7.0 新特性

    先列一下相关的语法: 1.out-variables(Out变量) 2.Tuples(元组) 3.Pattern Matching(匹配模式) 4.ref locals and returns (局部 ...

  10. WCF面试精典题汇总

    1.WCF接口中的参数改名问题 在写WCF Web Service接口的时候,如果你对接口的参数名做改动的时候,一定要记住Update所有应用该Web service的客户端的Referrence,否 ...