K-means聚类算法

K-means聚类算法也是聚类算法中最简单的一种了,但是里面包含的思想却不一般。

聚类属于无监督学习。在聚类问题中,给我们的训练样本是,每个,没有了y。

K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:

1、 随机选取k个聚类质心点(cluster centroids)为

2、 重复下面过程直到收敛 {

对于每一个样例i,计算其应该属于的类

对于每一个类j,重新计算该类的质心

}

K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。质心代表我们对属于同一个类的样本中心点的猜测,重复迭代第一步和第二步直到质心不变或者变化很小。

K-means面对的第一个问题是如何保证收敛,前面的算法中强调结束条件就是收敛,可以证明的是K-means完全可以保证收敛性。下面我们定性的描述一下收敛性,我们定义畸变函数(distortion function)如下:

J函数表示每个样本点到其质心的距离平方和。

K-means是要将J调整到最小。

假设当前J没有达到最小值,那么首先可以固定每个类的质心,调整每个样例的所属的类别来让J函数减少,同样,固定,调整每个类的质心也可以使J减小。这两个过程就是内循环中使J单调递减的过程。当J递减到最小时,和c也同时收敛。

由于畸变函数J是非凸函数,意味着我们不能保证取得的最小值是全局最小值,也就是说k-means对质心初始位置的选取比较感冒,但一般情况下k-means达到的局部最优已经满足需求。但如果你怕陷入局部最优,那么可以选取不同的初始值跑多遍k-means,然后取其中最小的J对应的和c输出。

下面累述一下K-means与EM的关系:

首先回到初始问题,我们目的是将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定的好不好呢?

我们使用样本的极大似然估计来度量,这里就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让P(x,y)最大。但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y可以指定。

这个过程有几个难点:

第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。

第二如何估计P(x,y),P(x,y)还可能依赖很多其他参数,如何调整里面的参数让P(x,y)最大。

EM算法的思想:E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计P(x,y)能够达到极大值。然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。

从K-means里我们可以看出它其实就是EM的体现,E步是确定隐含类别变量,M步更新其他参数来使J最小化。这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估计其他参数,直至目标函数最优。

EM算法就是这样,假设我们想估计知道A和B两个参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。

EM的意思是“Expectation Maximization”

http://blog.csdn.net/zouxy09/article/details/8537620

K-means聚类算法与EM算法的更多相关文章

  1. MM 算法与 EM算法概述

    1.MM 算法: MM算法是一种迭代优化方法,利用函数的凸性来寻找它们的最大值或最小值. MM表示 “majorize-minimize MM 算法” 或“minorize maximize MM 算 ...

  2. 机器学习优化算法之EM算法

    EM算法简介 EM算法其实是一类算法的总称.EM算法分为E-Step和M-Step两步.EM算法的应用范围很广,基本机器学习需要迭代优化参数的模型在优化时都可以使用EM算法. EM算法的思想和过程 E ...

  3. 【机器学习】K-means聚类算法与EM算法

    初始目的 将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类.由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定 ...

  4. Python实现机器学习算法:EM算法

    ''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- ...

  5. 机器学习十大算法之EM算法

    此文已由作者赵斌授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 由于目前论坛的Markdown不支持Mathjax,数学公式没法正常识别,文章只能用截图上传了...     ...

  6. 聚类之K均值聚类和EM算法

    这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...

  7. EM 算法-对鸢尾花数据进行聚类

    公号:码农充电站pro 主页:https://codeshellme.github.io 之前介绍过K 均值算法,它是一种聚类算法.今天介绍EM 算法,它也是聚类算法,但比K 均值算法更加灵活强大. ...

  8. EM算法(1):K-means 算法

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(1) : K-means算法 1. 简介 K-mean ...

  9. 极大似然估计、贝叶斯估计、EM算法

    参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就 ...

随机推荐

  1. shell基础笔记

    什么是shell脚本 我自己对shell脚本的理解就是一系列的shell命令加入逻辑关系,实现类似"批处理"的功能.而不是简单的命令的堆砌,那样的shell脚本bug重重. 脚本开 ...

  2. solr环境搭建及java小demo

    一配置solr环境 1.下载solr 2.配置solr(最好单独分离出一个tomcat,一台机器启动多个tomcat参见:http://www.cnblogs.com/lxlwellaccessful ...

  3. 由OpenResty粘合的企业Web架构

    前言:    2012年2月章亦春(agentzh)在Tech-Club的一次线下聚会上以<由Lua 粘合的Nginx生态环境>为主题做了演讲,分析了企业Web架构的趋势,即一个看起来完整 ...

  4. Codeforces Contest 870 前三题KEY

    A. Search for Pretty Integers: 题目传送门 题目大意:给定N和M个数,从前一个数列和后一个数列中各取一个数,求最小值,相同算一位数. 一道水题,读入A.B数组后枚举i.j ...

  5. 成都Uber优步司机奖励政策(3月17日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  6. Redis系列五 Redis持久化

    Redis持久化 一.RDB(Redis DataBase) 1.介绍 在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里. Red ...

  7. linux-centos6②

  8. liunx环境下安装禅道

    环境: vm12.5.2 CentOS-7-x86_64 ZenTaoPMS.9.1.stable.zbox_64 SecureCRT 8.0 因为liunx环境下配置apache, php, mys ...

  9. selenium自动化一点记录

    UI自动化 1.webdriver的findElement方法可以查找页面某元素,通常使用方式是通过id和name进行查找 1.By ID根据id进行定位 WebElement element=dri ...

  10. 总结获取原生JS(javascript)基本操作

    var a = document.getElementByIdx_x_x("dom"); jsCopy(a);//调用清理空格的函数 var b = a.childNodes;// ...