LINUX中断描述符初始化

@CopyLeft by ICANTHI Can do ANy THing that I CAN THink~

Author WenHui WuHan University2012-6-4

硬件产生中断之后,需要通过门描述符来寻找中断的处理程序入口。门描述符和段描述符一样,8个字节。门描述符大体分为:段偏移、段选择子以及DPL。段选择子用于在GDT中寻找到门段基址,DPL用于控制当前进程中断或异常访问权限。当发生中断时,将门描述符所指向的段基地放入%cs,将段偏移放入%eip,转入相应服务。

门描述符结构如下:

任务门描述符:用于在发生中断时调度相应进程

中断门描述符:描述中断处理程序所在段选择子和段内偏移值。据此修改EIP及关闭中断Eflags的IT标识位

陷阱门描述符:与中断门描述符一样,但不关中断

中断描述符表IDT(Interrupt Descriptor Table)用于存放256个门描述符,对应256个中断向量。其中IA32规定前0~31号固定向量用于异常。寄存器idtr为门描述符表IDT的物理地址。根据向量寻找基对应门描述符,并将中断或异常程序加载过程下图所示:

LINUX初始化中断描述符表分两步:初步初始化,以及最终初始化。初步初始化在head.S文件:http://os1a.cs.columbia.edu/lxr/source/arch/x86/kernel/head_32.S

中断描述符表初步初始化

1)声明256个门描述符的IDT表空间。

701 idt_descr:
702         .word IDT_ENTRIES*8-1           # idt contains 256 entries
703         .long idt_table

2)设置指向IDT表地址的寄存器ldtr

425         lgdt early_gdt_descr
426         lidt idt_descr
427         ljmp $(__KERNEL_CS),$1f
428 1:      movl $(__KERNEL_DS),%eax        # reload all the segment registers

2)初始化256个门描述符。对于每个门描述符,段选择子都指向内核段,段偏移都指向igore_int函数,该函数只打印一句话:“哥们,别急,俺还没被真正初始化勒!~”。

490 /*
491  *  setup_idt
492  *
493  *  sets up a idt with 256 entries pointing to
494  *  ignore_int, interrupt gates. It doesn't actually load
495  *  idt - that can be done only after paging has been enabled
496  *  and the kernel moved to PAGE_OFFSET. Interrupts
497  *  are enabled elsewhere, when we can be relatively
498  *  sure everything is ok.
499  *
500  *  Warning: %esi is live across this function.
501  */
502 setup_idt:
503         lea ignore_int,%edx
504         movl $(__KERNEL_CS << 16),%eax
505         movw %dx,%ax            /* selector = 0x0010 = cs */
506         movw $0x8E00,%dx        /* interrupt gate - dpl=0, present */
507 
508         lea idt_table,%edi
509         mov $256,%ecx
510 rp_sidt:
511         movl %eax,(%edi)
512         movl %edx,4(%edi)
513         addl $8,%edi
514         dec %ecx
515         jne rp_sidt
中断描述符表最终初始化

中断描述符表最终初始化分为两部分:异常和中断,分别在函数trap_init(void)和init_IRQ(void)中实现,都由系统初始化入口函数start_kernel()所调用。对于特定异常,其处理异常函数预先已经设定好;但对于特定异步中断,由于需要捕获设备I/O中断的程序数目不定,所以得采用特定数据结构来对irq及其action进行描述。

trap_init:http://os1a.cs.columbia.edu/lxr/source/arch/x86/kernel/traps.c#830

do_IRQ:

1)异常部分最终初始化

由于IA32规定异常所对应的固定向量,所以直接调用set_trap_gate()、set_intr_gate()、set_system_gate()、set_system_intr_gate()、set_task_gate()、set_intr_gate_ist()设置异常处理函数、初始相应异常。而这些函数,都只是_set_gate宏的封装而已。异常处理函数由宏定义DO_ERROR生成。其调用关系如下:

在trap_init(void)函数中,调用在set_intr_gate_ist()设置“stack exception”的12号中断门描述符。set_intr_gate_ist是设置中断描述符函数_set_gate的一层封装,给_set_gate传入异常处理函数stack_segment作为门描述符的偏移地址,传入__KERNEL_CS作为段选择子,传入GATE_INTERRUPT表示中断门描述符类型,传入DPL = 0表示只能由内核态访问、而不能由用户调用。

_set_gate函数中,其调用pack_gate()组装成一个门描述符格式,并调用write_idt_entry写入IDT表中相应描述符。stack_segment函数压入do_stack_segment函数地址并跳转到error_code汇编代码进行处理。具体代码(/arch/x86/include/asm/desc.h)如下:

830 void __init trap_init(void)
831 {
857         set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
898         x86_init.irqs.trap_init(); /* 初始化该平台x86的特定设备 */
899 }
 
383 static inline void set_intr_gate_ist(int n, void *addr, unsigned ist)
384 {
385         BUG_ON((unsigned)n > 0xFF);
386         _set_gate(n, GATE_INTERRUPT, addr, 0, ist, __KERNEL_CS);
387 }
 
312 static inline void _set_gate(int gate, unsigned type, void *addr,
313                              unsigned dpl, unsigned ist, unsigned seg)
314 {
315         gate_desc s;
316         pack_gate(&s, type, (unsigned long)addr, dpl, ist, seg);
317         /*
318          * does not need to be atomic because it is only done once at
319          * setup time
320          */
321         write_idt_entry(idt_table, gate, &s);
322 }
 
064 static inline void pack_gate(gate_desc *gate, unsigned char type,
065                              unsigned long base, unsigned dpl, unsigned flags,
066                              unsigned short seg)
067 {
068         gate->a = (seg << 16) | (base & 0xffff);
069         gate->b = (base & 0xffff0000) |
070                   (((0x80 | type | (dpl << 5)) & 0xff) << 8);
071 }
 
115 static inline void native_write_idt_entry(gate_desc *idt, int entry,
116                                           const gate_desc *gate)
117 {
118         memcpy(&idt[entry], gate, sizeof(*gate));
119 }
 
然异常12号处理者stack_segment,何许人也?在/arch/x86/kernel/entry_32.S中定义如下:
1014 ENTRY(stack_segment)
1015         RING0_EC_FRAME
1016         pushl $do_stack_segment
1017         CFI_ADJUST_CFA_OFFSET 4
1018         jmp error_code
1019         CFI_ENDPROC
1020 END(stack_segment)

有的异常,例如stack_segment,系统由硬件产生错误码并压入栈中。另外一些异常,系统将不产生异常,例如overflow,为了统一中断、产生错误码的异常和不产生错误码的异常的栈内存布局,故“人为地”pushl $0。

958 ENTRY(overflow)
959         RING0_INT_FRAME
960         pushl $0
961         CFI_ADJUST_CFA_OFFSET 4
962         pushl $do_overflow
963         CFI_ADJUST_CFA_OFFSET 4
964         jmp error_code
965         CFI_ENDPROC
966 END(overflow)

在error_code中,首先保存中断寄存器上下文等,其次调用do_stack_segment进行处理,最后调用ret_from_exception进行善后工作,代码如下:

1291 error_code:
1292         /* the function address is in %gs's slot on the stack */
1293         pushl %fs
1294         CFI_ADJUST_CFA_OFFSET 4
1295         /*CFI_REL_OFFSET fs, 0*/
1296         pushl %es
1297         CFI_ADJUST_CFA_OFFSET 4
1298         /*CFI_REL_OFFSET es, 0*/
1299         pushl %ds
1300         CFI_ADJUST_CFA_OFFSET 4
1301         /*CFI_REL_OFFSET ds, 0*/
1302         pushl %eax
1303         CFI_ADJUST_CFA_OFFSET 4
1304         CFI_REL_OFFSET eax, 0
1305         pushl %ebp
1306         CFI_ADJUST_CFA_OFFSET 4
1307         CFI_REL_OFFSET ebp, 0
1308         pushl %edi
1309         CFI_ADJUST_CFA_OFFSET 4
1310         CFI_REL_OFFSET edi, 0
1311         pushl %esi
1312         CFI_ADJUST_CFA_OFFSET 4
1313         CFI_REL_OFFSET esi, 0
1314         pushl %edx
1315         CFI_ADJUST_CFA_OFFSET 4
1316         CFI_REL_OFFSET edx, 0
1317         pushl %ecx
1318         CFI_ADJUST_CFA_OFFSET 4
1319         CFI_REL_OFFSET ecx, 0
1320         pushl %ebx
1321         CFI_ADJUST_CFA_OFFSET 4
1322         CFI_REL_OFFSET ebx, 0
1323         cld
1324         movl $(__KERNEL_PERCPU), %ecx
1325         movl %ecx, %fs
1326         UNWIND_ESPFIX_STACK   /* 用于处理系统栈不是32位的情况 */
1327         GS_TO_REG %ecx        /* 把%gs存入%ecx中 */
1328         movl PT_GS(%esp), %edi          # get the function address
1329         movl PT_ORIG_EAX(%esp), %edx    # get the error code
1330         movl $-1, PT_ORIG_EAX(%esp)     # no syscall to restart
1331         REG_TO_PTGS %ecx      /* 把%gs的值存入栈的%gs中,即处理代码指针位置 */
1332         SET_KERNEL_GS %ecx
1333         movl $(__USER_DS), %ecx
1334         movl %ecx, %ds
1335         movl %ecx, %es
1336         TRACE_IRQS_OFF
1337         movl %esp,%eax                  # pt_regs pointer
1338         call *%edi
1339         jmp ret_from_exception
1340         CFI_ENDPROC
1341 END(page_fault)

在error_code中执行在1338行call *edi之前,栈的内存布局如下图。

在error_code处理“栈异常”处理时,call *edi = call do_stack_segment,do_stack_segment函数由DO_ERROR宏生成。error_code给do_stack_segment函数传入regs参数时,由ABI规范规定,eax为第一个参数 struct pt_regs regs。pt_regs与栈内存布局相同,其结构体如下:

021 struct pt_regs {
022         long ebx;
023         long ecx;
024         long edx;
025         long esi;
026         long edi;
027         long ebp;
028         long eax;
029         int  xds;
030         int  xes;
031         int  xfs;
032         int  xgs;     /* 对应%gs,对于异常而言是处理器代码 */
033         long orig_eax; /* 对应于内存布局中的error code或vector */
034         long eip;
035         int  xcs;
036         long eflags;
037         long esp;
038         int  xss;
039 };

stack_segment函数是“栈异常”的异常处理函数,由DO_ERROR宏产生:

215 #ifdef CONFIG_X86_32
216 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
217 #endif
183 #define DO_ERROR(trapnr, signr, str, name)                              \
184 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)     \
185 {                                                                       \
186         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)  \
187                                                         == NOTIFY_STOP) \
188                 return;                                                 \
189         conditional_sti(regs);                                          \
190         do_trap(trapnr, signr, str, regs, error_code, NULL);            \
191 }

可见,do_stack_segment最后调用do_trap进行异常处理。

2)中断描述符表中断部分最终初始化

由start_kernel()调用init_IRQ(void)进行中断最终初始化。其操作流程如下:

1) 将CPU0 IRQ0…IRQ15的vectors设置为0…15。对于CPU0的vecotr_irq而言,若其IRQ是PIC中断,则其vector早已由PIC固定,所以设置其IRQ0…IRQ15的vector为0…15。若是I/O APIC,由于其vector分配是可由OS动态设置,所以vector 0…15可能会被重新分配;

2) 本质上调用native_init_IRQ()函数对irq_desc、以及中断部分门描述符进行初始化,并针对CONFIG_4KSTACKS配置、协处理器模拟浮点运算等进行配置;

a、 调用init_ISA_irqs()初始化8259A可断控制器,并对相应中断请求线IRQ进行初始化、使其对应中断控制器irq_desc的操作函数为8259A操作接口函数;

b、 调用apic_intr_init()函数针对采取I/O APIC中断处理器的情况,对APIC中断处理器进行初始化工作;

c、 将调用set_intr_gate为系统中每根中断请求线IRQ地应的中断向量号设置了相应的中断门描述门,其中断处理函数定义在interrupt数组中

d、 在PC平台下set_irq(2, &rq2)对从8259A中断控制器的第三根IRQ请求做特殊处理;

e、 irq_ctx_init函数用于在配置CONFIG_4KSTACK的情况下配置当前CPU的中断栈相关项。LINUX内核在未配置CONFIG_4KSTACK时,共享所中断进程的内核栈,内核栈为两页,即8K。在2.6版本时,增加了CONFIG_4KSTACK选项,将栈大小从两页减小至一页,为了应对栈的减少,故中断处理程序拥有自己的中断处理程序线,为原先共享栈的一半,即4K,每个CPU拥有一个中断栈。

125 void __init init_IRQ(void)
126 {
127         int i;
128 
129         /*
130          * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15.
131          * If these IRQ's are handled by legacy interrupt-controllers like PIC,
132          * then this configuration will likely be static after the boot. If
133          * these IRQ's are handled by more mordern controllers like IO-APIC,
134          * then this vector space can be freed and re-used dynamically as the
135          * irq's migrate etc.
136          */
137         for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
138                 per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i;
 
/* intr_init()本质上调用native_init_IRQ()初始化。用x86_init.irqs.intr_init()函数对irq_desc、以及中断部分门描述符进行初始化。x86_init是x86_init_ops类型,集成针对x86特定平台的各种初始化工作,包含初始化PCI总线、中断、异常等,其中irqs就是针对中断进行初始化操作。*/
140         x86_init.irqs.intr_init();
141 }

/arch/x86/include/asm/x86_init.h

115 /**
116  * struct x86_init_ops - functions for platform specific setup
117  *
118  */
119 struct x86_init_ops {
122         struct x86_init_irqs            irqs;
124         struct x86_init_paging          paging;
125         struct x86_init_timers          timers;
127         struct x86_init_pci             pci;
128 };
 
047 /**
048  * struct x86_init_irqs - platform specific interrupt setup
049  * @pre_vector_init:            init code to run before interrupt vectors
050  *                              are set up.
051  * @intr_init:                  interrupt init code
052  * @trap_init:                  platform specific trap setup
053  */
054 struct x86_init_irqs {
055         void (*pre_vector_init)(void);
056         void (*intr_init)(void);
057         void (*trap_init)(void);
058 };

/arch/x86/kernel/x86_init.c

029 /*
030  * The platform setup functions are preset with the default functions
031  * for standard PC hardware.
032  */
033 struct x86_init_ops x86_init __initdata = {
051         .irqs = {
052                 .pre_vector_init        = init_ISA_irqs,
053                 .intr_init              = native_init_IRQ,
054                 .trap_init              = x86_init_noop,
055         },
082 };
235 void __init native_init_IRQ(void)
236 {
237         int i;
238 
239         /* Execute any quirks before the call gates are initialised: */
/* 调用init_ISA_irqs()初始化irq_desc[0…NR_IRQS] = {.status = IRQ_DISABLED, 
.action = NULLL, .depth = 1}。并且对于irq0 … 15,
将其handler = &i8259A_irq_type*/
240         x86_init.irqs.pre_vector_init();
241 
242         apic_intr_init();
243 
244         /*
245          * Cover the whole vector space, no vector can escape
246          * us. (some of these will be overridden and become
247          * 'special' SMP interrupts)
248          */
/* 调用set_intr_gate()为每根IRQ对应的中断向量号设置了相应的中断门描述符 */
249         for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
250                 /* IA32_SYSCALL_VECTOR could be used in trap_init already. */
251                 if (!test_bit(i, used_vectors))
252                         set_intr_gate(i, interrupt[i-FIRST_EXTERNAL_VECTOR]);
253         }
/* 系统若非I/O APIC,则IRQ3用于8259A从片的级联,故进行特殊处理 */
255         if (!acpi_ioapic)
256                 setup_irq(2, &irq2);
257 
258 #ifdef CONFIG_X86_32
259         /*
260          * External FPU? Set up irq13 if so, for
261          * original braindamaged IBM FERR coupling.
262          */
/* 在处理器集成协处理器,而该协处理器没有浮点处理单元的情况下设置针对浮点计算异常的处理函数fpu_irq,该函数用软件模拟的方法来进行浮点数运算 */
263         if (boot_cpu_data.hard_math && !cpu_has_fpu)
264                 setup_irq(FPU_IRQ, &fpu_irq);
/* 在内核选中CONFIG_4KSTACKS时,为系统中每一CPU设置中断、异常处理函数所需的内核态栈;在没有选中该选项的情况下,irq_ctx_init是个空语句 */
266         irq_ctx_init(smp_processor_id());
267 #endif
268 }
101 void __init init_ISA_irqs(void)
102 {
103         int i;
/* 若存在LOCAL_APIC,则对Local APIC模块进行设置 */
105 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
106         init_bsp_APIC();
107 #endif
/* 初始化中断控制器8259A */
108         legacy_pic->init(0);
109 
110         /*
111          * 16 old-style INTA-cycle interrupts:
112          */
/* 系统中断老式处理方式是由两片8259A级联而成,每片可有8个IRQ,故两片最多初始化16个IRQ,但由于IRQ 2用于级联,故实际仅有15个有效IRQ。 */
113         for (i = 0; i < legacy_pic->nr_legacy_irqs; i++) {
114                 struct irq_desc *desc = irq_to_desc(i);
115 
116                 desc->status = IRQ_DISABLED;
117                 desc->action = NULL;
118                 desc->depth = 1;
119 
120                 set_irq_chip_and_handler_name(i, &i8259A_chip,
121                                               handle_level_irq, "XT");
122         }
123 }

interrupt数组

interrupt数组符号由汇编代码定义,其源码如下:

/arch/x86/kernel/entry_32.S

819 /*
820  * Build the entry stubs and pointer table with some assembler magic.
821  * We pack 7 stubs into a single 32-byte chunk, which will fit in a
822  * single cache line on all modern x86 implementations.
823  */
824 .section .init.rodata,"a"
825 ENTRY(interrupt)
826 .text
827         .p2align 5
828         .p2align CONFIG_X86_L1_CACHE_SHIFT
829 ENTRY(irq_entries_start)
830         RING0_INT_FRAME
831 vector=FIRST_EXTERNAL_VECTOR /* =0x20,0~31号内部中断 */
832 .rept (NR_VECTORS-FIRST_EXTERNAL_VECTOR+6)/7
833         .balign 32 /* 32字节对齐 */
834   .rept 7
835     .if vector < NR_VECTORS
836       .if vector <> FIRST_EXTERNAL_VECTOR
/* 按照CFA规则修改前一个offset,以达4字节对齐。CFA标准(Call Frame Information), help a debugger create a reliable backtrace through functions. */
837         CFI_ADJUST_CFA_OFFSET -4 
838       .endif
839 1:      pushl $(~vector+0x80)   /* Note: always in signed byte range ,[-256 ~ -1] */
840         CFI_ADJUST_CFA_OFFSET 4         /* 按CFA规则4字节对齐 */
841       .if ((vector-FIRST_EXTERNAL_VECTOR)%7) <> 6
842         jmp 2f
843       .endif
844       .previous
845         .long 1b
846       .text
847 vector=vector+1
848     .endif
849   .endr /* end of rep 7 */
850 2:      jmp common_interrupt
851 .endr /* end of rep (NR_VECTORS – FIRST_...) */
852 END(irq_entries_start)
853 
854 .previous
855 END(interrupt)

ENTRY(interrupt)通过伪指令.rept、.endr,将在代码段产生(NR_VECTORS - FIRST_EXTERNAL_VECTOR)个跳转到common_interrupt的汇编代码片段,起始地址是irq_entries_start;在数据段产生一个中断数组的符号interrupt,用于记录产生代码段中每个中断向量处理的汇编代码片段地址,在C语言中将interrupt符号作为中断数组变量导入:

132 extern void (*__initconst interrupt[NR_VECTORS-FIRST_EXTERNAL_VECTOR])(void);

ENTRY(interrupt)编译之后,所生成的代码段和数据段内存布局如下:

ENTRIY(interrupt)汇编代码段主要由两个rept构成,外层rept循环(NR_VECTORS-FIRST_EXTERNAL_VECTOR+6)/7次,而每次内层rept循环7次,内层循环所产生的代码以32字节对齐,内层rept循环产生的代码如上图irq_entries_start中以粗黑方框表示。

以两层rept循环生成jmp common_interrupt的目的在于:

在内循环内,前6次循环产生的代码指令为:push和short jmp,而第7次产生的代码指令为:push和long jmp。push占2字节,short jmp占2字节,long jmp占5字节,故采取此种方式内层rept循环7次产生的代码大小为:6 * (2 + 2) + 2 + 5 = 31 字节。而外层循环以32字节对齐,相比于老版本每次都为push和long jmp而言,所以利用short jmp节省了内存开销。参见:http://didat.sprg.uniroma2.it/la/docs/la12-10.pdf

每个中断门描述符在将vector压入后都跳转到common_interrupt进行处理。common_interrupt在保存中断现场之后,跳转到do_IRQ进行中断函数处理,最后调用iret_from_intr进行中断返回、恢复中断上下文。

863 common_interrupt:
864         addl $-0x80,(%esp)      /* Adjust vector into the [-256,-1] range */
865         SAVE_ALL /* 宏定义,负责完成宏定义中断现场的保护工作 */
866         TRACE_IRQS_OFF
867         movl %esp,%eax
868         call do_IRQ
869         jmp ret_from_intr
870 ENDPROC(common_interrupt)
195 .macro SAVE_ALL
196         cld  /* 清除系统标志寄存器EFLAGS中的方向标志位DF,使%si、%di寄存器的值在每次字符串指令操作后自动+1,使自字符串从低地址到高地址方向处理 */
197         PUSH_GS
198         pushl %fs
199         CFI_ADJUST_CFA_OFFSET 4
200         /*CFI_REL_OFFSET fs, 0;*/
201         pushl %es
202         CFI_ADJUST_CFA_OFFSET 4
203         /*CFI_REL_OFFSET es, 0;*/
204         pushl %ds
205         CFI_ADJUST_CFA_OFFSET 4
206         /*CFI_REL_OFFSET ds, 0;*/
207         pushl %eax
208         CFI_ADJUST_CFA_OFFSET 4
209         CFI_REL_OFFSET eax, 0
210         pushl %ebp
211         CFI_ADJUST_CFA_OFFSET 4
212         CFI_REL_OFFSET ebp, 0
213         pushl %edi
214         CFI_ADJUST_CFA_OFFSET 4
215         CFI_REL_OFFSET edi, 0
216         pushl %esi
217         CFI_ADJUST_CFA_OFFSET 4
218         CFI_REL_OFFSET esi, 0
219         pushl %edx
220         CFI_ADJUST_CFA_OFFSET 4
221         CFI_REL_OFFSET edx, 0
222         pushl %ecx
223         CFI_ADJUST_CFA_OFFSET 4
224         CFI_REL_OFFSET ecx, 0
225         pushl %ebx
226         CFI_ADJUST_CFA_OFFSET 4
227         CFI_REL_OFFSET ebx, 0
228         movl $(__USER_DS), %edx
229         movl %edx, %ds
230         movl %edx, %es
231         movl $(__KERNEL_PERCPU), %edx
232         movl %edx, %fs
233         SET_KERNEL_GS %edx
234 .endm

common_interrupt在调用do_IRQ之前中断栈内存布局如下:

[fw]LINUX中断描述符初始化的更多相关文章

  1. Linux kernel的中断子系统之(三):IRQ number和中断描述符

    返回目录:<ARM-Linux中断系统>. 总结: 二描述了中断处理示意图,以及关中断.开中断,和IRQ number重要概念. 三介绍了三个重要的结构体,irq_desc.irq_dat ...

  2. linux kernel的中断子系统之(三):IRQ number和中断描述符【转】

    转自:http://www.wowotech.net/linux_kenrel/interrupt_descriptor.html 一.前言 本文主要围绕IRQ number和中断描述符(interr ...

  3. Linux中断 - IRQ number和中断描述符

    一.前言 本文主要围绕IRQ number和中断描述符(interrupt descriptor)这两个概念描述通用中断处理过程.第二章主要描述基本概念,包括什么是IRQ number,什么是中断描述 ...

  4. 玩转Linux文件描述符和重定向

    本文介绍linux中文件描述符与重定向的相关知识,文件描述符是与文件输入.输出相关联的整数,它们用来跟踪已打开的文件.有需要的朋友参考下. 原文出处:http://www.jbxue.com/arti ...

  5. Linux 文件描述符详解

    Overview 了解Linux怎样处理输入和输出是非常重要的.一旦我们了解其原理以后,我们就可以正确熟练地使用脚本把内容输出到正确的位置.同样我们也可以更好地理解输入重定向和输出重定向. Linux ...

  6. [转帖]linux文件描述符文件/etc/security/limits.conf

    linux文件描述符文件/etc/security/limits.conf https://blog.csdn.net/fanren224/article/details/79971359 需要多学习 ...

  7. linux文件描述符、软硬连接、输入输出重定向

    引用链接:https://blog.csdn.net/qq769651718/article/details/79459346 文件描述符的作用: 文件描述符是linux操作系统中特有的概念.其相当于 ...

  8. Linux进程描述符task_struct结构体详解--Linux进程的管理与调度(一)【转】

    Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息.它定义在include/linux/sched.h文件中. 谈到task_str ...

  9. Linux文件描述符与打开文件之间的区别(转载)

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/38965239   1. 概述     在Linux系统中一切皆可以看成是文件,文件又可分为: ...

随机推荐

  1. Java 8实战之读书笔记二:基础知识

    好记性不如烂笔头,整理一些个人觉得比较重要的东西. 一.基础知识 第1章 为什么要关心Java 8 Java 8提供了一个新的API(称为"流", Stream),它支持许多处理数 ...

  2. 初学Java 九九乘法表

    public class MultiplicationTable { public static void main(String[] args) { System.out.println(" ...

  3. 初学Java 使用输入对话框

    import javax.swing.JOptionPane; public class ComputeLoanUsingInputDialog { public static void main(S ...

  4. CSS书写顺序提高可读性

    属性书写顺序 [建议] 同一 rule set 下的属性在书写时,应按功能进行分组,并以 Formatting Model(布局方式.位置) > Box Model(尺寸) > Typog ...

  5. zookeeper与kafka安装搭建

    1.2181:对cline端提供服务 2.3888:选举leader使用 3.2888:集群内机器通讯使用(Leader监听此端口)

  6. Ehcahe独立使用

    <?xml version="1.0" encoding="utf-8"?><ehcache xmlns:xsi="http://w ...

  7. SpringIntegration---MongDB

    1.依赖 <dependency> <groupId>org.springframework.integration</groupId> <artifactI ...

  8. uwsgi部署django项目

    一.更新系统软件包 yum update -y 二.安装软件管理包及依赖 yum -y groupinstall "Development tools" yum install o ...

  9. centos7在线安装mysql8.0.16

    一.官网复制安装源地址: 1.进入官网地址:https://dev.mysql.com/downloads/repo/yum/ 二.进入/usr/local目录下 ,创建mysql文件夹 三.使用命令 ...

  10. php strtok()函数 语法

    php strtok()函数 语法 作用:逐一分割字符串大理石构件 语法:strtok(string,split) 参数: 参数 描述 string 必需.规定要分割的字符串. split 必需.规定 ...