Description

Input

一共T+1行
第1行为数据组数T(T<=10)
第2~T+1行每行一个非负整数N,代表一组询问

Output

一共T行,每行两个用空格分隔的数ans1,ans2

Sample Input

6
1
2
8
13
30
2333

Sample Output

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

Solution

裸的杜教筛。具体的内容详见洲阁2015年的集训队论文。这里我就大致口胡一下,求一个积性函数的前缀和可以把它狄利克雷卷积上另一个函数,同时卷上的这个函数和卷完得到的这个函数如果都很好求前缀和的话,那么就可以用杜教筛来求。phi函数大致的推导如下:

Code

 #include <cstdio>
#include <map> #define R register
#define maxn 2000010
typedef long long ll;
int phi[maxn], miu[maxn], pr[maxn / ], prcnt;
ll sph[maxn], smi[maxn];
bool vis[maxn];
const int moha = ;
struct Hash {
Hash *next;
int ps; ll ans;
} *last1[moha], *last2[moha], mem[moha], *tot = mem;
inline ll S1(R int n)
{
if (n < maxn) return sph[n];
for (R Hash *iter = last1[n % moha]; iter; iter = iter -> next)
if (iter -> ps == n) return iter -> ans; R ll ret = 1ll * n * (n + 1ll) / ;
for (R ll i = , j; i <= n; i = j + )
{
j = n / (n / i);
ret -= S1(n / i) * (j - i + );
}
*++tot = (Hash) {last1[n % moha], n, ret}; last1[n % moha] = tot;
return ret;
}
inline ll S2(R int n)
{
if (n < maxn) return smi[n];
for (R Hash *iter = last2[n % moha]; iter; iter = iter -> next)
if (iter -> ps == n) return iter -> ans; R ll ret = ;
for (R ll i = , j; i <= n; i = j + )
{
j = n / (n / i);
ret -= (j - i + ) * S2(n / i);
}
*++tot = (Hash) {last2[n % moha], n, ret}; last2[n % moha] = tot;
return ret;
}
int main()
{
R int T; scanf("%d", &T);
phi[] = sph[] = ;
miu[] = smi[] = ;
for (R int i = ; i < maxn; ++i)
{
if (!vis[i]) pr[++prcnt] = i, phi[i] = i - , miu[i] = -;
sph[i] = sph[i - ] + phi[i];
smi[i] = smi[i - ] + miu[i];
for (R int j = ; j <= prcnt && 1ll * i * pr[j] < maxn; ++j)
{
vis[i * pr[j]] = ;
if (i % pr[j])
{
phi[i * pr[j]] = phi[i] * (pr[j] - );
miu[i * pr[j]] = -miu[i];
}
else
{
phi[i * pr[j]] = phi[i] * pr[j];
miu[i * pr[j]] = ;
break;
}
}
}
for (; T; --T)
{
R int N; scanf("%d", &N);
// printf("%d\n", N);
printf("%lld %lld\n", S1(N), S2(N));
}
return ;
}
/*
6
1
2
8
13
30
2333
*/

【BZOJ3944】 Sum的更多相关文章

  1. 【BZOJ3944】Sum(杜教筛)

    [BZOJ3944]Sum(杜教筛) 题面 求\[\sum_{i=1}^n\mu(i)和\sum_{i=1}^n\phi(i)\] 范围:\(n<2^{31}\) 令\[S(n)=\sum_{i ...

  2. 【BZOJ3944】Sum

    题面 Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1, ...

  3. 【CF914G】Sum the Fibonacci 快速??变换模板

    [CF914G]Sum the Fibonacci 题解:给你一个长度为n的数组s.定义五元组(a,b,c,d,e)是合法的当且仅当: 1. $1\le a,b,c,d,e\le n$2. $(s_a ...

  4. 【BZOJ4262】Sum 单调栈+线段树

    [BZOJ4262]Sum Description Input 第一行一个数 t,表示询问组数. 第一行一个数 t,表示询问组数. 接下来 t 行,每行四个数 l_1, r_1, l_2, r_2. ...

  5. 【POJ1707】【伯努利数】Sum of powers

    Description A young schoolboy would like to calculate the sum for some fixed natural k and different ...

  6. 【loj6059】Sum

    Portal --> loj6059 Solution ​​ 看过去第一反应是..大力数位dp!然后看了一眼数据范围... ​ 但是这没有什么关系!注意到我们不需要考虑前导零了,可以直接快乐dp ...

  7. 【leetcode】Sum Root to Leaf Numbers(hard)

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  8. 【LeetCode】Sum of Two Integers

    问题描述: Calculate the sum of two integers a and b, but you are not allowed to use the operator + and - ...

  9. 【POJ2739】Sum of Consecutive Prime Numbers

    简单的素数打表,然后枚举.开始没注意n读到0结束,TLE了回..下次再认真点.A过后讨论里面有个暴力打表过的,给跪了! #include <iostream> #include <c ...

随机推荐

  1. java循环队列实现代码

    public class Queue { //队首指针 private int front; //队尾指针 private int rear; //数组 private int[] arr; //数组 ...

  2. IO库中的宽字符语言

    wchar_t是C/C++的字符类型,是一种扩展的存储方式.wchar_t类型主要用在国际化程序的实现中,但它不等同于uni编码.uni编码的字符一般以wchar_t类型存. IO库为了支持宽字符语言 ...

  3. opencv学习之读取图像-imread函数

    序 想要完整全面地学习opencv,仅凭阅读samples的示例源码是不够的.毕竟opencv是一个拥有非常多函数的程序库,所以在每学习一个函数时,芒果觉得有必要记录下来,分享给有需要的同学.于是,就 ...

  4. Java中「与运算,或运算,异或运算,取反运算。」

    版权声明一:本文为博主原创文章,转载请附上原文出处链接和本声明.版权声明二:本网站的所有作品会及时更新,欢迎大家阅读后发表评论,以利作品的完善.版权声明三:对不遵守本声明或其他违法.恶意使用本网内容者 ...

  5. 104、验证Swarm数据持久性 (Swarm11)

    参考https://www.cnblogs.com/CloudMan6/p/8016994.html   上一节我们成功将 nfs 的volume挂载到 Service上,本节验证 Failover时 ...

  6. centos查看实时网络带宽占用情况方法【转】

    Linux中查看网卡流量工具有iptraf.iftop以及nethogs等,iftop可以用来监控网卡的实时流量(可以指定网段).反向解析IP.显示端口信息等. centos安装iftop的命令如下: ...

  7. 分布式的几件小事(五)dubbo的spi思想是什么

    1.什么是SPI机制 SPI 全称为 Service Provider Interface,是一种服务发现机制. SPI 的本质是将接口实现类的全限定名配置在文件中,并由服务加载器读取配置文件,加载实 ...

  8. 大神的JS代码风格指南

    js代码风格指南:1.缩进使用空格,不要用制表符2.必须用分号3.暂时不用ES6(modules)例如export和import命令4.不鼓励(不禁止)水平对齐5.少用var 都应该使用const或者 ...

  9. MySQL之RPM安装说明及配置

    1.查看当前系统是否安装过Linux rpm -qa | grep -i mysql 未安装无任何输出:安装会打印对应mysql的rpm安装包. 2.准备安装包: MySQL-client-5.5.4 ...

  10. Tensorflowlite移植ARM平台iMX6

    一.LINUX环境下操作: 1.安装交叉编译SDK (仅针对该型号:i.MX6,不同芯片需要对应的交叉编译SDK) 编译方法参考:手动编译用于i.MX6系列的交叉编译SDK 2.下载Tensorflo ...