题目链接

题意 : 给出 N 种纸币、并且给出面值、每种纸币的数量可以任选、问你得出来的数在 k 进制下、末尾位的数有多少种可能、输出具体方案

分析 :

纸币任意选择组成的和

可以用一个一次多项式来表示

A1*B1 + A2*B2 + A3*B3 + ... + An*Bn ( A 为面值、B 为数量 )

根据裴蜀定理、这个一次多项式的结果集应当是 gcd( A1、A2 .... An ) 的倍数

然后考虑怎么得到每个数 k 进制下的最后一位数

实际上你考虑一下十进制是怎么转化为 k 进制的

就能够分析出、只要将这个十进制模以 k 就能得到

那么也就是说要求 ( A1*B1 + A2*B2 + A3*B3 + ... + An*Bn ) % k 的结果集

模可以转化为减法 故有 A1*B1 + A2*B2 + A3*B3 + ... + An*Bn - y*k

那么结果集就应当是 gcd( A1、A2 .... An 、k ) 的倍数

那么总数就有 k / gcd( A1、A2 .... An 、k )

具体的方案就直接枚举 gcd 的倍数就行了、上界为 k

#include<bits/stdc++.h>
using namespace std;

int main(void)
{
    int n, k;
    cin>>n>>k;

    ;
    ; i<=n; i++){
        int tmp;
        cin>>tmp;
        ) GCD = tmp;
        else GCD = __gcd(GCD, tmp);
    }

    GCD = __gcd(GCD, k);

    cout<< k / GCD <<endl;

    ; i<k; i+=GCD) cout<<i<<" "; cout<<endl;

    ;
}

Codeforces #499 E Border ( 裴蜀定理 )的更多相关文章

  1. codeforces 1260C. Infinite Fence (数学or裴蜀定理)

    只需要验证小间隔在大间隔之间有没有连续的k个 设小间隔为a,大间隔为b,那么a在b之间出现的次数在\(\lfloor \frac{b}{a}\rfloor\)或者\(\lfloor \frac{b}{ ...

  2. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  3. 【BZOJ-1441】Min 裴蜀定理 + 最大公约数

    1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] De ...

  4. BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)

    一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...

  5. 【BZOJ】1441: Min(裴蜀定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...

  6. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  7. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

  8. 【Wannafly挑战赛22A计数器】【裴蜀定理】

    https://www.nowcoder.com/acm/contest/160/A 题目描述 有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an中的任意一个整数 ...

  9. [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)

    [BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...

随机推荐

  1. 西安邀请赛-E(树链剖分+线段树)

    题目链接:https://nanti.jisuanke.com/t/39272 题意:给一棵树,n个结点,树根为1,n-1条边,每个结点有一个权值.进行3种操作: 1 s t:把1和s之间的最短路径上 ...

  2. GS7 安装使用Oracle19c 客户端的说明

    1. 最近Oracle放出了 windows版本的oracle19c的安装文件(具体时间不详, 自己知道的时候比较晚了) 2. 发现文件其实比较多如图示: 3. 经过自己测试实现发现 不能使用  如下 ...

  3. Shell初学(六)Linux Shell 时间运算以及时间差计算方法

    Linux Shell 时间运算以及时间差计算方法 时间的加减,以及时间差的计算. 1. 时间加减 这里处理方法,是将基础的时间转变为时间戳,然后,需要增加或者改变时间,变成 秒. 如:1990-01 ...

  4. C++11智能指针原理和实现

    一.智能指针起因 在C++中,动态内存的管理是由程序员自己申请和释放的,用一对运算符完成:new和delete. new:在动态内存中为对象分配一块空间并返回一个指向该对象的指针: delete:指向 ...

  5. 分层最短路(牛客第四场)-- free

    题意: 给你边权,起点和终点,有k次机会把某条路变为0,问你最短路是多长. 思路: 分层最短路模板题.题目有点坑(卡掉了SPFA,只能用dijkstra跑的算法). #include<iostr ...

  6. Ubuntu14.04安装Caffe(CPU)

    一 安装Ubuntu14.04LTS Ubuntu分区 1.SWAP 交换分区:与物理内存相当. 2.“/” 根目录分区:该区大小由硬盘大小而定,10-100G. 3.“HOME” 家目录分区:该区也 ...

  7. Zabbix 系统概述与部署

    Zabbix是一个非常强大的监控系统,是企业级的软件,来监控IT基础设施的可用性和性能.它是一个能够快速搭建起来的开源的监控系统,Zabbix能监视各种网络参数,保证服务器系统的安全运营,并提供灵活的 ...

  8. Codeforces 1196C. Robot Breakout

    传送门 维护合法区域的四个边 $xa,ya,xb,yb$ 表示在以 $(xa,ya)$ 为左下角,以 $(xb,yb)$ 为右上角的矩形内的点都是合法答案 对于一个起点 $(x,y)$,如果没法往左, ...

  9. [转载]HTTP和HTTPS

    来源:https://blog.csdn.net/xiaoming100001/article/details/81109617 大纲 一.前言: 先来观察这两张图,第一张访问域名http://www ...

  10. luogu P4006 小 Y 和二叉树

    luogu loj 可以发现度数\(< 3\)的点可以作为先序遍历的第一个点,那么就把度数\(< 3\)的编号最小的点作为第一个点.然后现在要确定它的左右儿子(或者是右儿子和父亲).我们把 ...