CH5105 Cookies[线性DP]
大概有一个初步状态的设计想法,第一维dp到第几个人,第二位dp发了多少饼干。但是人是杂乱无章的,无法进行dp。尝试将无序化为有序,看看可不可以排序。
发现越贪婪的人,我们希望他拿的饼干越多,因为少的话造成的代价大嘛,所以宁愿让贪婪度小的人去造成代价。
猜到最优方案一定是按贪婪度从大到小排序后从左到右分发饼干单调不增的。可以用微扰证明,比如假设在排序后的某个人之后的人分的饼干比这人多,发现剩下的人不会消去怨气可能会更多。对于两个人来说,通过自身贪婪度关系可以比较出这样一定是不优的。日常口胡证明毕。
所以有了顺序,$g$从大到小,dp。暴力思路是$f[i][j][k]$表示第$i$个人时发了$j$个,本人拿了$k$个的min代价。所以每次枚举$i,j,k$,再考虑和之前的大小关系,也就是枚举之前连续多少个人和他拿的饼干一样多,然后转移。
$f[i][j][k]=min\{f[i-l][j-l*k][p]+sum[i-l+1$~$i]*(i-l)\}$
然后会享受到时空双炸。然后就卡住了。。。。
lyd给的做法乍一看有点神仙。。根本想不到啊。。。但是仔细剖析一下,其本质就是对上面暴力的一种(等效)优化。优化功夫还不到家啊。。
发现原本枚举第$i$个人拿了$k$个饼干并向前枚举有多少人也拿了$k$个,这样其实是没有必要的多余计算。当第$i$个人取了$1$个饼干,向前直接枚举即可。
而假设要计算取了$k(k \geqslant 2)$个饼干的话呢,这种情况可以直接由之前推过的状态等效转移。所有人统一去掉$1$块饼干,是不是我之前推过的状态$(f[i][j-i][...])$?也就是说我之前的$j-i$块饼干分配的最优情况,再经过每人都发一块,其最优性不变,也就是$i$取了$k$个的时候的最优情况。(可以反证证明为什么之前的最优的统一加一块就是现在最优的)这等效于我暴力枚举$k$,再枚举人数。其本质是一种前缀min的不断继承。
所以状态得到简化 $f[i][j]$表示第$i$个人时发了$j$个的$min$代价。然后每次每个人由选$1$个(暴力dp)和选若干个(等效转移)中取min即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define ddbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,M=+;const ll INF=1ll<<;
ll f[N][M],sum[N][N];
int ans[N],n,m,cnt;
struct thxorz{
int g,pos;
}A[N];
pii h[N][M];
inline char cmp(thxorz a,thxorz b){return a.g>b.g;} int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
read(n),read(m);
for(register int i=;i<=n;++i)read(A[i].g),A[i].pos=i;
sort(A+,A+n+,cmp);
for(register int i=;i<=n;++i)sum[][i]=sum[][i-]+A[i].g;
for(register int i=;i<=n;++i)for(register int j=;j<=i;++j)sum[j][i]=sum[][i]-sum[][j-];
for(register int i=;i<=n;++i){
for(register int j=;j<i;++j)f[i][j]=INF;f[i][i]=;
for(register int j=i+;j<=m;++j){
f[i][j]=f[i][j-i];h[i][j]=make_pair(i,j-i);
for(register int k=i-;k;--k)if(MIN(f[i][j],sum[k+][i]*k+f[k][j-(i-k)]))h[i][j]=make_pair(k,j-i+k);
}
}
printf("%lld\n",f[n][m]);int x=n;
while(x){
if(h[x][m].first==x)++cnt;
else for(register int i=h[x][m].first+;i<=x;++i)ans[A[i].pos]=cnt+;
pii tmp=h[x][m];x=tmp.first,m=tmp.second;
}
for(register int i=;i<=n;++i)printf("%d ",ans[i]);
return ;
}
CH5105 Cookies[线性DP]的更多相关文章
- $CH5105\ Cookies$ 线性$DP+$贪心
CH 是很有趣的一道题 : ) Sol 第一反应就是f[i][j]表示前i个小朋友分j块饼干的最小怨气值 但是一个孩子所产生的怨气值并不固定,它与其他孩子获得饼干的情况有关 这里可以用到一个贪心,就是 ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
- nyoj44 子串和 线性DP
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...
- 『最大M子段和 线性DP』
最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...
随机推荐
- Django-ORM之ForeignKey的使用-多对一关系
ForeignKey使用俩表示两张表多对一关系的外键,外键字段要定义在多属性的表中. 定义外键时,to的表可以直接写类名,但是需要注意类的定义顺序:也可以写字符串式的类名,这样就可以忽略class类的 ...
- python高级 之(四) --- 模块方法
模块 时间模块:time/datatime/calendar. 系统操作文件模块:os time模块 介绍 import time # 获取当前时间, 结果是存在时间元组中的.星期一是从0开始的 # ...
- Linux后台运行python程序并输出到日志文件
后台运行python程序并标准输出到文件 现在有test.py程序要后台部署, 里面有输出内容 使用命令: nohup python -u test.py > test.log 2>&am ...
- /etc/passwd字段信息
root:x:0:0:root:/root:/bin/bash bin:x:1:1:bin:/bin:/sbin/nologin daemon:x:2:2:daemon:/sbin:/sbin/nol ...
- Markdown用法说明(用此篇博客做示例)
一份好的博客文档离不开一个优秀的编辑器.借此篇文章介绍一下编写该博客markdown的语法,后续再增加介绍其他语法,方便大家写出更好更漂亮的文档.点击左上角github,有主题源码哦 一份好的博客文档 ...
- sublime text 修改侧边栏字体大小
ctrl+shift_p 安装PackageResourceViewer,通过**PackageResourceViewer **这个插件来实现. 打开这个插件,选择Open Resource 输入T ...
- mysql——操作数据库
一.查看数据库 show databases; 二.创建数据库 create database 数据库名; 三.删除数据库 drop database 数据库名; 四.查看数据库存储引擎 show e ...
- poj1050-最大子矩阵(dp)
链接:http://poj.org/problem?id=1050 题意:给定n*n的矩阵,求和最大的子矩阵. 思路:我们将二维矩阵降维至一维,即将第i行到第j行的所有列压缩成一行,我们可以在线性时间 ...
- SpringBoot-2-基本配置
自定义启动配置 在resources下面新建一个banner.txt文件,里面写入自己想要的内容 /////////////////////////////////////////////////// ...
- 使用Python基于OpenCV的验证码识别
Blog:https://blog.csdn.net/qq_40962368/article/details/89312429(Verification_Code_Identification) 步骤 ...