http://contest-hunter.org:83/contest/0x50%E3%80%8C%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E3%80%8D%E4%BE%8B%E9%A2%98/5105%20Cookies


大概有一个初步状态的设计想法,第一维dp到第几个人,第二位dp发了多少饼干。但是人是杂乱无章的,无法进行dp。尝试将无序化为有序,看看可不可以排序。

发现越贪婪的人,我们希望他拿的饼干越多,因为少的话造成的代价大嘛,所以宁愿让贪婪度小的人去造成代价。

猜到最优方案一定是按贪婪度从大到小排序后从左到右分发饼干单调不增的。可以用微扰证明,比如假设在排序后的某个人之后的人分的饼干比这人多,发现剩下的人不会消去怨气可能会更多。对于两个人来说,通过自身贪婪度关系可以比较出这样一定是不优的。日常口胡证明毕。

所以有了顺序,$g$从大到小,dp。暴力思路是$f[i][j][k]$表示第$i$个人时发了$j$个,本人拿了$k$个的min代价。所以每次枚举$i,j,k$,再考虑和之前的大小关系,也就是枚举之前连续多少个人和他拿的饼干一样多,然后转移。

$f[i][j][k]=min\{f[i-l][j-l*k][p]+sum[i-l+1$~$i]*(i-l)\}$

然后会享受到时空双炸。然后就卡住了。。。。

lyd给的做法乍一看有点神仙。。根本想不到啊。。。但是仔细剖析一下,其本质就是对上面暴力的一种(等效)优化。优化功夫还不到家啊。。

发现原本枚举第$i$个人拿了$k$个饼干并向前枚举有多少人也拿了$k$个,这样其实是没有必要的多余计算。当第$i$个人取了$1$个饼干,向前直接枚举即可。

而假设要计算取了$k(k \geqslant 2)$个饼干的话呢,这种情况可以直接由之前推过的状态等效转移。所有人统一去掉$1$块饼干,是不是我之前推过的状态$(f[i][j-i][...])$?也就是说我之前的$j-i$块饼干分配的最优情况,再经过每人都发一块,其最优性不变,也就是$i$取了$k$个的时候的最优情况。(可以反证证明为什么之前的最优的统一加一块就是现在最优的)这等效于我暴力枚举$k$,再枚举人数。其本质是一种前缀min的不断继承

所以状态得到简化 $f[i][j]$表示第$i$个人时发了$j$个的$min$代价。然后每次每个人由选$1$个(暴力dp)和选若干个(等效转移)中取min即可。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define ddbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,M=+;const ll INF=1ll<<;
ll f[N][M],sum[N][N];
int ans[N],n,m,cnt;
struct thxorz{
int g,pos;
}A[N];
pii h[N][M];
inline char cmp(thxorz a,thxorz b){return a.g>b.g;} int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
read(n),read(m);
for(register int i=;i<=n;++i)read(A[i].g),A[i].pos=i;
sort(A+,A+n+,cmp);
for(register int i=;i<=n;++i)sum[][i]=sum[][i-]+A[i].g;
for(register int i=;i<=n;++i)for(register int j=;j<=i;++j)sum[j][i]=sum[][i]-sum[][j-];
for(register int i=;i<=n;++i){
for(register int j=;j<i;++j)f[i][j]=INF;f[i][i]=;
for(register int j=i+;j<=m;++j){
f[i][j]=f[i][j-i];h[i][j]=make_pair(i,j-i);
for(register int k=i-;k;--k)if(MIN(f[i][j],sum[k+][i]*k+f[k][j-(i-k)]))h[i][j]=make_pair(k,j-i+k);
}
}
printf("%lld\n",f[n][m]);int x=n;
while(x){
if(h[x][m].first==x)++cnt;
else for(register int i=h[x][m].first+;i<=x;++i)ans[A[i].pos]=cnt+;
pii tmp=h[x][m];x=tmp.first,m=tmp.second;
}
for(register int i=;i<=n;++i)printf("%d ",ans[i]);
return ;
}

CH5105 Cookies[线性DP]的更多相关文章

  1. $CH5105\ Cookies$ 线性$DP+$贪心

    CH 是很有趣的一道题 : ) Sol 第一反应就是f[i][j]表示前i个小朋友分j块饼干的最小怨气值 但是一个孩子所产生的怨气值并不固定,它与其他孩子获得饼干的情况有关 这里可以用到一个贪心,就是 ...

  2. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  3. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  4. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  5. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  6. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  7. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  8. nyoj44 子串和 线性DP

    线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...

  9. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

随机推荐

  1. React-Native传值方式之 :DeviceEventEmitter添加监听控制并传值到其他页面

    在 native 开发中,我们可以使用广播实现事件的订阅和事件的触发,从而实现不在该页面但是可以调用该页面的方法. 在 React Native 中,我们也可以使用 DeviceEventEmitte ...

  2. vim简单题练习-------出自《鸟哥的linux私房菜》第309页码题目

    用vim打开文件,在第34行向右移动15字符,怎么做? 34G 15->或者15j 如何到达文件的页首或者页尾? 1G或者gg G 如何在光标所在行中,移动到行头及行尾? home end vi ...

  3. 【AMAD】django-silk -- 为Django提供如丝般顺滑的性能测量

    动机 简介 个人评分 动机 Django作为一个web框架,进行性能测量是很复杂的,不可以使用传统的程序profile工具. 因为,web app的性能是多维度的,不仅仅是代码执行效率,还包括网络延时 ...

  4. 【AMAD】django-guradian -- 为Django加入单个对象级别的权限

    动机 简介 个人评分 动机 django默认的permission系统就是将将能用的程度.默认授权会将一个数据表所有数据的权限都授予,而现实世界不是这样.很多时候,我们仅想授权数据的一小部分给用户. ...

  5. 【DSP开发】【并行计算-CUDA开发】TI OpenCL v01.01.xx

    TI OpenCL v01.01.xx TI OpenCL™ Runtime Documentation Contents: Introduction OpenCL 1.1 Reference Mat ...

  6. 【Linux开发】编写属于你的第一个Linux内核模块

    曾经多少次想要在内核游荡?曾经多少次茫然不知方向?你不要再对着它迷惘,让我们指引你走向前方-- 内核编程常常看起来像是黑魔法,而在亚瑟 C 克拉克的眼中,它八成就是了.Linux内核和它的用户空间是大 ...

  7. Zuul网关跨域问题

    1.跨域就指着协议,域名,端口不一致,出于安全考虑,跨域的资源之间是无法交互的.简单说就是协议不通,域名不通,端口不同都会产生跨域问题 Access-Control-Allow-Origin是HTML ...

  8. Spring(十三)-- Spring 事务

    Spring 事务 1. 回忆之前事务知识点  一:事务的概念 将一系列的数据操作捆绑在一起,成为一个整体进行统一管理! 一条或者多条sql语句的集合!  二:事务的ACID特性 原子性(Atomic ...

  9. redis缓存穿透00

    缓存穿透 缓存穿透,是指查询一个数据库一定不存在的数据.正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存.如果数据库 ...

  10. mybatis-sql执行流程源码分析

    1. SqlSessionFactory 与 SqlSession. 通过前面的章节对于mybatis 的介绍及使用,大家都能体会到SqlSession的重要性了吧, 没错,从表面上来看,咱们都是通过 ...