BZOJ 3622: 已经没有什么好害怕的了(二项式反演)
##解题思路
首先将$a$,$b$排序,然后可以算出$t(i)$,表示$a(i)$比多少个$b(i)$大,根据容斥套路,设$f(k)$表示恰好有$k$个$a(i)$比$b(i)$大,$g(k)$表示至少有$k$个,那么$g(k)=\sum\limits_^n\dbinomf(i)$。发现这是一个二项式反演的形式,现在的问题变为如何求$g(k)$,发现可以强制选$k$组,其余的任意搭配,强制选$k$组就可以$dp$了。设$dp(i)(j)$表示前$i$个数,选了$j$个的方案数,因为$a$数组已经排好序,所以$dp(i)(j)=dp(i-1)(j)+dp(i-1)(j-1)max(0,t(i)-j+1)$,然后$g(k)=dp(n)(k)(n-k)!$
##代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int N=2005;
const int MOD=1e9+9;
typedef long long LL;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
inline int max(int x,int y){return x>y?x:y;}
int n,k,a[N],b[N],t[N],f[N][N],fac[N],inv[N],ans;
inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
}
inline int C(int x,int y){
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
}
int main(){
n=rd(),k=rd();if((n+k)&1) return puts("0"),0;
k=(n+k)>>1;int now=1;fac[0]=1;
for(int i=1;i<=n;i++) a[i]=rd();
for(int i=1;i<=n;i++) b[i]=rd();
sort(a+1,a+1+n);sort(b+1,b+1+n);
for(int i=1;i<=n;i++){
t[i]=t[i-1];
while(a[i]>b[now] && now<=n) t[i]++,now++;
}
f[0][0]=1;
for(int i=1;i<=n;i++){
f[i][0]=1;
for(int j=1;j<=i;j++)
f[i][j]=(f[i-1][j]+(LL)f[i-1][j-1]*(max(0,t[i]-j+1))%MOD)%MOD;
}
for(int i=1;i<=n;i++) fac[i]=(LL)fac[i-1]*i%MOD;
inv[n]=fast_pow(fac[n],MOD-2);
for(int i=n-1;~i;i--) inv[i]=(LL)inv[i+1]*(i+1)%MOD;
for(int i=k;i<=n;i++){
if((i-k)&1) ans=(ans+(MOD-(LL)C(i,k)*f[n][i]%MOD*fac[n-i]%MOD))%MOD;
else ans=(ans+(LL)C(i,k)*f[n][i]%MOD*fac[n-i]%MOD)%MOD;
}
printf("%d\n",ans);
return 0;
}
BZOJ 3622: 已经没有什么好害怕的了(二项式反演)的更多相关文章
- bzoj 3622 已经没有什么好害怕的了——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622 令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数:g[i] 表 ...
- luoguP4859 已经没有什么好害怕的了(二项式反演)
luoguP4859 已经没有什么好害怕的了(二项式反演) 祭奠天国的bzoj. luogu 题解时间 先特判 $ n - k $ 为奇数无解. 为了方便下记 $ m = ( n + k ) / 2 ...
- BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]
3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...
- bzoj 3622 已经没有什么好害怕的了 类似容斥,dp
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1213 Solved: 576[Submit][Status][ ...
- BZOJ 3622 : 已经没有什么好害怕的了(dp + 广义容斥原理)
今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \ ...
- BZOJ3622 已经没有什么好害怕的了 二项式反演+DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3622 题解 首先显然如果 \(n - k\) 为奇数那么就是无解.否则的话,"糖果& ...
- [BZOJ 3622]已经没有什么好害怕的了
世萌萌王都拿到了,已经没有什么好害怕的了—— (作死) 笑看哪里都有学姐,真是不知说什么好喵~ 话说此题是不是输 0 能骗不少分啊,不然若学姐赢了,那么有头的学姐还能叫学姐吗? (作大死) 这 ...
- ●BZOJ 3622 已经没有什么好害怕的了
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3622 题解: 容斥,dp1).可以求出需要多少对"糖果>药片"(K ...
- 解题:BZOJ 3622 已经没有什么好害怕的了·
题面 用来学习二项式反演的题目 大于等于/小于等于 反演出 恰好等于 设前者为f(n),后者为g(n),则有$f(n)=\sum\limits_{i=0}^nC_n^ig(n)<->g(n ...
随机推荐
- Java常用数据结构Set, Map, List
1. Set Set相对于List.Map是最简单的一种集合.集合中的对象不按特定的方式排序,并且没有重复对象. 特点: 它不允许出现重复元素: 不保证和政集合中元素的顺序 允许包含值为null的元素 ...
- VMware vSphere(虚拟化平台)
VMware vSphere 是业界领先且最可靠的虚拟化平台.vSphere将应用程序和操作系统从底层硬件分离出来,从而简化了 IT操作.您现有的应用程序可以看到专有资源,而您的服务器则可以作为资源池 ...
- HihoCoder - 1673 (单调队列)
题目:https://vjudge.net/contest/319166#problem/A 题意:有一个01矩阵,求一个最大子矩阵面积,这个矩阵要求里面都是01间隔,没有0或1连续 思路:这个题其实 ...
- leetcode-解题记录 557. 反转字符串中的单词 III
题目: 给定一个字符串,你需要反转字符串中每个单词的字符顺序,同时仍保留空格和单词的初始顺序. 示例 1: 输入: "Let's take LeetCode contest" 输出 ...
- ubuntu 设置固定IP
vim /etc/network/interface address 要固定的IP地址 netmask 子网掩码 A类地址 默认255.0.0.0 B类地址默 255.255.0.0 ...
- Python笔记(五)_内置函数BIF
查看所有的内置函数:dir(__builtins__) abs() 获取绝对值 max() 返回给定元素中的最大值 min() 返回给定元素中的最小值 sum() 求和 reverse ...
- spring cloud学习--feign
简单示例 增加feign maven依赖 <dependency> <groupId>org.springframework.cloud</groupId> < ...
- Codeforces 1140C(贪心+堆)
题面 传送门 题意: 给出长度为n的序列b,t,定义一个子序列的值为\(\min\{ b_i\} \times \sum t_i\),求所有子序列中值最大的一个,输出最大值 分析 假如固定某个b[i] ...
- luoguP3128 [USACO15DEC]最大流Max Flow 题解(树上差分)
链接一下题目:luoguP3128 [USACO15DEC]最大流Max Flow(树上差分板子题) 如果没有学过树上差分,抠这里(其实很简单的,真的):树上差分总结 学了树上差分,这道题就极其显然了 ...
- python列表之添加、修改和删除元素
修改列表中的元素: subject= ['math', 'Chinese', 'English'] subject[0] = 'history' # 列表名[要修改元素的下标]=修改后的元素 prin ...