题意 : 一个十进制整数被叫做权势二进制, 当他的十进制表示的时候只由0或1组成。例如0, 1, 101, 110011都是权势二进制而2, 12, 900不是。当给定一个n (1<=n<=1,000,000)的时候, 计算一下最少要多少个权势二进制相加才能得到n。

分析 : 由于权势二进制可以在任意一位构造出1或者0, 那我就可以让每一位都在同时减1, 直到某一位变成0, 继续减其他位, 直到全部都等于0。例如 23303, 可以先构造11101进行相减, 使得除了零外的每一位都减1, 减两次后会变成 01101, 此时再减一次1101即可, 可以看出减的次数取决于这个数中最大的位数, 比如23303就是3, 8889就是9......而减的次数也就是题目所求的最少相加次数。

瞎搞 : 完全没看出考查思维……然后先是进制转化构造出了1,000,000内所有的权势二进制, 最后发现二分查找+贪心无法解决, 一脸懵逼看了题解才发现居然如此巧妙。=_=

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<algorithm>
using namespace std;

int main(void)
{
    char ch;
    ;
    while( (ch=getchar()) && ch!='\n' ){
        ' > Max ){
            Max = ch-';
        }
    }
    printf("%d\n", Max);
    ;
}

51Nod 1413 权势二进制 (思维)的更多相关文章

  1. 51nod 1413 权势二进制【进制思维】

    1413 权势二进制 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 一个十进制整数被叫做权势二进制,当他的十进制 ...

  2. 51nod 1413 权势二进制 背包dp

    1413 权势二进制 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB  一个十进制整数被叫做权势二进制,当他的十进制表示的时候只由0或1组成.例如0,1,101, ...

  3. 51nod 1413 权势二进制

    本来刚开始还是想用每一位 -1的个数 然后再乘以10  不断累加 后来发现 完全不是这回事啊  因为本身就是0 和 1 所以只要记录出现的最大的数字 就是答案  因为 n >= 1 // 所以不 ...

  4. 51nod 1413:权势二进制

    1413 权势二进制 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 一个十进制整数被叫做权势二进制,当他的十进制 ...

  5. 权势二进制(51Nod 1413)

    一个十进制整数被叫做权势二进制,当他的十进制表示的时候只由0或1组成.例如0,1,101,110011都是权势二进制而2,12,900不是. 当给定一个n的时候,计算一下最少要多少个权势二进制相加才能 ...

  6. POJ 2777 Count Color (线段树成段更新+二进制思维)

    题目链接:http://poj.org/problem?id=2777 题意是有L个单位长的画板,T种颜色,O个操作.画板初始化为颜色1.操作C讲l到r单位之间的颜色变为c,操作P查询l到r单位之间的 ...

  7. 51nod 1273 旅行计划——思维题

    某个国家有N个城市,编号0 至 N-1,他们之间用N - 1条道路连接,道路是双向行驶的,沿着道路你可以到达任何一个城市.你有一个旅行计划,这个计划是从编号K的城市出发,每天到达一个你没有去过的城市, ...

  8. Neko Performs Cat Furrier Transform CodeForces - 1152B 二进制思维题

    Neko Performs Cat Furrier TransformCodeForces - 1152B 题目大意:给你一个x,在40步操作以内把x变成2m−1,m为非负整数.对于每步操作,奇数步可 ...

  9. 51nod 1413

    思路: 直接在串里找个最大的值就好了: #include <cstdio> #include <cstring> #include <cstdlib> #inclu ...

随机推荐

  1. CountDownLatch与CyclicBarrier的对比

    CountDownLatch: CountDownLatch通过计数器来实现,计数器表示线程的数量.每当一个线程执行结束后,计数器的值就会减1,并在await方法处阻塞.一旦计数器为0,所有阻塞的线程 ...

  2. Linux内核基础优化

    Linux内核基础优化 net.ipv4.ip_forward = 1 #开启网络转发 net.ipv4.conf.default.rp_filter = 0 #开启代理功能 net.ipv4.con ...

  3. Solrcloud单机伪集群部署

    线上有一套双节点的Solrcloud节点,因机器性能较老,环境搭建于2013年,原节点有数百个已经被unload的collections,考虑以后可能还会需要,所以搭建一套和原节点相同的solrclo ...

  4. Java计算两个时间的天数差与月数差 LocalDateTime

    /**  * 计算两个时间点的天数差  * @param dt1 第一个时间点  * @param dt2 第二个时间点  * @return int,即要计算的天数差  */ public stat ...

  5. spring aop之父子容器

    需求;项目对外提供接口,要求每个对外接口都要进行token认证. 解决办法:写一个token认证的工具类,在每个需要认证的接口方法开始的地方,调用工具类中的token认证方法. 问题:因为要满足指定条 ...

  6. inline void 树状数组神奇感悟【雾

    才发现扫描线可以用树状数组搞... 致远星患者 (另外根据这篇博文的内容怎么越来越感觉自己往 PJ 入门靠拢了...) 还有一点,咱把树状数组当做线段树来康的话其实一切都会很清晰,这个来张四合一的图: ...

  7. 03、重定义CDF

    有一篇文章“Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data”, ...

  8. element-ui select 下拉框位置错乱--解决

    element-ui select 下拉框位置错乱 由于使用 element-ui 的 select 组件时,下拉框的位置错乱了. 开始查找问题 通过各种问题查找,发现是 css 问题 css bod ...

  9. Quartz.net 3.x使用总结(一)——简单使用

    原文:Quartz.net 3.x使用总结(一)--简单使用 阅读目录 1.Quartz.net简介 2.简单使用 3.TriggerBuilder介绍 3.1  SimpleSchedule 3.2 ...

  10. Jquery复习(一)之animate()易忘点

    可以用 animate() 方法来操作所有 CSS 属性吗? 是的,几乎可以!不过,需要记住一件重要的事情:当使用 animate() 时,必须使用 Camel 标记法书写所有的属性名,比如,必须使用 ...