分析

[BZOJ3779]重组病毒唯一的区别是多了一个链上求实链段数的操作。

因为每条实链的颜色必然不相同且一条实链上不会有两个深度相同的点(好像算法的正确性和第二个条件没什么关系,算了算了),画图分析可得,如果用\(dis[x]\)表示从\(x\)到根结点路径上的实链段数,则\(x\)到\(y\)路径上的实链段数可以表示为:

\[dis[x]+dis[y]-dis[lca(x,y)]*2+1
\]

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#define rin(i,a,b) for(int i=(a);i<=(b);i++)
#define rec(i,a,b) for(int i=(a);i>=(b);i--)
#define trav(i,a) for(int i=head[(a)];i;i=e[i].nxt)
using std::cin;
using std::cout;
using std::endl;
typedef long long LL; inline int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x;
} const int MAXN=100005;
int n,m;
int ecnt,head[MAXN];
int fa[MAXN],dep[MAXN],siz[MAXN],pc[MAXN];
int top[MAXN],id[MAXN],num[MAXN],tot;
int maxn[MAXN<<2],atag[MAXN<<2],loc,ql,qr,kk;
int sta[MAXN],statop; struct Edge{
int to,nxt;
}e[MAXN<<1]; inline void add_edge(int bg,int ed){
ecnt++;
e[ecnt].to=ed;
e[ecnt].nxt=head[bg];
head[bg]=ecnt;
} struct lct{
int fa,ch[2];
int tag;
}a[MAXN]; inline void subupd(int x,int kkk); inline int subquery(int x); #define lc a[x].ch[0]
#define rc a[x].ch[1]
inline bool isroot(int x){
return a[a[x].fa].ch[0]!=x&&a[a[x].fa].ch[1]!=x;
} inline void pushr(int x){
std::swap(lc,rc);
a[x].tag^=1;
} inline void pushdown(int x){
if(!a[x].tag) return;
if(lc) pushr(lc);
if(rc) pushr(rc);
a[x].tag=0;
} inline void rotate(int x){
int y=a[x].fa,z=a[y].fa;
int f=(a[y].ch[1]==x),g=a[x].ch[f^1];
if(!isroot(y)) a[z].ch[a[z].ch[1]==y]=x;
a[x].ch[f^1]=y;
a[y].ch[f]=g;
if(g) a[g].fa=y;
a[y].fa=x;
a[x].fa=z;
} inline void splay(int x){
int y=x,z;
statop=1;
sta[1]=y;
while(!isroot(y)) sta[++statop]=y=a[y].fa;
while(statop) pushdown(sta[statop--]);
while(!isroot(x)){
y=a[x].fa,z=a[y].fa;
if(!isroot(y)){
if((a[y].ch[0]==x)==(a[z].ch[0]==y)) rotate(y);
else rotate(x);
}
rotate(x);
}
} inline int findroot(int x){
while(pushdown(x),lc) x=lc;
return x;
} inline void access(int x){
for(int y=0;x;x=a[y=x].fa){
splay(x);
if(rc) subupd(findroot(rc),1);
rc=y;
if(rc) subupd(findroot(rc),-1);
}
}
#undef lc
#undef rc void dfs1(int x,int pre,int depth){
fa[x]=pre;
a[x].fa=pre;
dep[x]=depth;
siz[x]=1;
int maxsiz=-1;
trav(i,x){
int ver=e[i].to;
if(ver==pre) continue;
dfs1(ver,x,depth+1);
siz[x]+=siz[ver];
if(siz[ver]>maxsiz){
maxsiz=siz[ver];
pc[x]=ver;
}
}
} void dfs2(int x,int topf){
top[x]=topf;
id[x]=++tot;
num[tot]=x;
if(!pc[x]) return;
dfs2(pc[x],topf);
trav(i,x){
int ver=e[i].to;
if(ver==fa[x]||ver==pc[x]) continue;
dfs2(ver,ver);
}
} #define mid ((l+r)>>1)
#define lc (o<<1)
#define rc ((o<<1)|1)
void build(int o,int l,int r){
if(l==r){
maxn[o]=dep[num[l]];
return;
}
build(lc,l,mid);
build(rc,mid+1,r);
maxn[o]=std::max(maxn[lc],maxn[rc]);
} inline void segpushdown(int o){
if(!atag[o]) return;
maxn[lc]+=atag[o];
maxn[rc]+=atag[o];
atag[lc]+=atag[o];
atag[rc]+=atag[o];
atag[o]=0;
} void upd(int o,int l,int r){
if(ql<=l&&r<=qr){
maxn[o]+=kk;
atag[o]+=kk;
return;
}
segpushdown(o);
if(mid>=ql) upd(lc,l,mid);
if(mid<qr) upd(rc,mid+1,r);
maxn[o]=std::max(maxn[lc],maxn[rc]);
} int squery(int o,int l,int r){
if(l==r) return maxn[o];
segpushdown(o);
if(loc<=mid) return squery(lc,l,mid);
else return squery(rc,mid+1,r);
} int rquery(int o,int l,int r){
if(ql<=l&&r<=qr) return maxn[o];
segpushdown(o);
int ret=0;
if(mid>=ql) ret=std::max(ret,rquery(lc,l,mid));
if(mid<qr) ret=std::max(ret,rquery(rc,mid+1,r));
return ret;
}
#undef mid
#undef lc
#undef rc inline int lca(int x,int y){
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]]) std::swap(x,y);
x=fa[top[x]];
}
return dep[x]<dep[y]?x:y;
} inline void subupd(int x,int kkk){
ql=id[x],qr=id[x]+siz[x]-1,kk=kkk;
upd(1,1,n);
} inline int subquery(int x){
ql=id[x],qr=id[x]+siz[x]-1;
return rquery(1,1,n);
} int main(){
n=read(),m=read();
rin(i,2,n){
int u=read(),v=read();
add_edge(u,v);
add_edge(v,u);
}
dfs1(1,0,1);
dfs2(1,1);
build(1,1,n);
while(m--){
int opt=read();
if(opt==1){
int x=read();
access(x);
}
else if(opt==2){
int ans=0;
int x=read(),y=read();
loc=id[x];ans+=squery(1,1,n);
loc=id[y];ans+=squery(1,1,n);
loc=id[lca(x,y)];ans-=(squery(1,1,n)<<1);
ans++;
printf("%d\n",ans);
}
else{
int x=read();
printf("%d\n",subquery(x));
}
}
return 0;
}

[BZOJ4817][SDOI2017]树点涂色:Link-Cut Tree+线段树的更多相关文章

  1. 【BZOJ4817】树点涂色(LCT,线段树,树链剖分)

    [BZOJ4817]树点涂色(LCT,线段树,树链剖分) 题面 BZOJ Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义 ...

  2. [BZOJ4817][SDOI2017]树点涂色(LCT+DFS序线段树)

    4817: [Sdoi2017]树点涂色 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 692  Solved: 408[Submit][Status ...

  3. P3703 [SDOI2017]树点涂色 LCT维护颜色+线段树维护dfs序+倍增LCA

    \(\color{#0066ff}{ 题目描述 }\) Bob有一棵\(n\)个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同. 定义一条路径的权值是:这条路径上的点 ...

  4. bzoj4817/luogu3703 树点涂色 (LCT+dfs序+线段树)

    我们发现,这个染色的操作他就很像LCT中access的操作(为什么??),然后就自然而然地想到,其实一个某条路径上的颜色数量,就是我们做一个只有access操作的LCT,这条路径经过的splay的数量 ...

  5. BZOJ.4817.[SDOI2017]树点涂色(LCT DFS序 线段树)

    题目链接 操作\(1.2\)裸树剖,但是操作\(3\)每个点的答案\(val\)很不好维护.. 如果我们把同种颜色的点划分到同一连通块中,那么向根染色的过程就是Access()! 最初所有点间都是虚边 ...

  6. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  7. Link Cut Tree 动态树 小结

    动态树有些类似 树链剖分+并查集 的思想,是用splay维护的 lct的根是动态的,"轻重链"也是动态的,所以并没有真正的轻重链 动态树的操作核心是把你要把 修改/询问/... 等 ...

  8. LCT(link cut tree) 动态树

    模板参考:https://blog.csdn.net/saramanda/article/details/55253627 综合各位大大博客后整理的模板: #include<iostream&g ...

  9. 洛谷.3690.[模板]Link Cut Tree(动态树)

    题目链接 LCT(良心总结) #include <cstdio> #include <cctype> #include <algorithm> #define gc ...

随机推荐

  1. 【Linux开发】Ubuntu图形界面切换与磁盘扩展分区

    Ubuntu14.04设置字符界面快捷键:ctrl-alt-f1 切换回图形界面:ctrl-alt-f7 为虚拟机拓展了30G的空间,挂在了/mnt/sda3这个目录下: 说明一下Ubuntu14.0 ...

  2. JavaSE_Java跨平台原理

    Java语言的核心优势就是跨平台. C/C++语言都是直接编译成针对特定平台的机器码,如果要跨平台,需要借用相应的编译器重新编译.Java源程序(.java)要先编译成与平台无关的字节码文件(.cla ...

  3. 005 gcc 的简单使用

    0. 前言 本文主要讲关于 gcc 的几种编译方式 不妨设文件名为 test.c 1. 方法一 $ gcc test.c (Windows OS)编译成功的话,没有回馈,在 test.c 所在的文件夹 ...

  4. SwipeRefreshLayout和RecyclerView类

    1 SwipeRefreshLayout和RecyclerView之间的关系 内容栏上下滚动是RecyclerView控制的,只有当内容栏滑动到最顶上时,再也拉不动了的时候,这个时候将动作交给Swip ...

  5. JS案例经验二

    一 关键词:鼠标事件的触发 可以在函数中指定让鼠标事件自动触发,而不是必须要鼠标滑过才触发,例如: main.onmouseover(); // 可以把该语句看做是鼠标滑过的模拟动作 main是DOM ...

  6. P1106删数游戏

    这道题曾经在CQOJ上考过,是第二次做了. 这是一道使用字符串的贪心题.首先要根据机组例子来确定:删除递增序列的最后一位.即循环找到那一位后,把后面的数往前压.所以我在艰难处理完双重循环后(这个处理不 ...

  7. HNUSTOJ-1437 无题

    1437: 无题 时间限制: 1 Sec  内存限制: 128 MB提交: 268  解决: 45[提交][状态][讨论版] 题目描述 tc在玩一个很无聊的游戏:每一次电脑都会给一个长度不超过10^5 ...

  8. Spring基础15——通过工厂方法来配置bean

    1.什么是工厂方法 这里的工厂方法指的是创建指定bean的方法.工厂方法又分为静态工厂方法和实例工厂方法. 2.静态工厂方法配置bean 调用静态工厂方法创建Bean是将对象创建的过程封装到静态方法中 ...

  9. SVN更新报错:Checksum mismatch for 解决办法

    问题: Checksum mismatch while updating '……'; expected: '3f9fd4dd7d1a0304d8020f73300a3e07', actual: 'cd ...

  10. ## ucore Lab0 一些杂记

    ucore Lab0 一些杂记 前一阵子开始做 MIT 6.828,做了两三个实验才发现清华的 ucore 貌似更友好一些,再加上前几个实验也与6.828 有所重叠,于是决定迁移阵地. 文章计划分两类 ...