Math.Net Numerics has capability to conduct Markov Chair Monte Carlo simulations, yet the document is very sparse. The only examples I found are in F# (see below). In this note, I attempt to port these examples into C# and hope others may find it useful in their research. Note that there are some errors in the original F# code, and this note corrected them. The ported code has been published as ASP.NET web services at x.ecoruse.org. Thus, one can easily copied over to any windows or web development projects.

Ported C# Code

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.Services;
using MathNet.Numerics.Distributions;
using MathNet.Numerics.Statistics;
using MathNet.Numerics.Random;
using MathNet.Numerics.Statistics.Mcmc; [WebService(Namespace = "http://x.ecourse.org")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class MCMC : System.Web.Services.WebService { public MCMC () {} [WebMethod(Description = "Sampling Beta variable via rejection")]
public double[] BetaViaRejection(double a, double b, int N) {
    var rnd = new MersenneTwister();
    var beta = new Beta(a, b);
    var uniform = new ContinuousUniform(0.0, 1.0, rnd);
    var rs = new RejectionSampler(
            (x => Math.Pow(x, beta.A - 1.0) * Math.Pow(1.0 - x, beta.B - 1.0)),
            (x => 0.021), (() => uniform.Sample()));
    var arr= rs.Sample(N);
     return arr;
    //string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: "
        + Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
        + beta.StdDev + " vs Sample StandardDeviation: "
        + Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
    //return result;
} [WebMethod(Description = "Sampling a normal variable via Metropolis")]
public double[] NormaViaMetropolis(double mean, double stdev, int N)
{
    var rnd = new MersenneTwister();
    var normal = new Normal(mean, stdev);     var ms = new MetropolisHastingsSampler(0.1, x => Math.Log(normal.Density(x)),
                                                (x,y)=>Normal.PDFLn(x,0.3,y),
                                                 x => Normal.Sample(rnd, x, 0.3), 20);     var arr = ms.Sample(N);
     return arr;
    //string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: " 
        + Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
        + beta.StdDev + " vs Sample StandardDeviation: "
        + Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
     //return result;
} [WebMethod(Description = "Sampling a normal variable via Metropolis symmetric proposal")]
public double[] NormaViaMetropolisSymmetricProposal(double mean, double stdev, int N)
{
    var rnd = new MersenneTwister();
    var normal = new Normal(mean, stdev);     var ms = new MetropolisHastingsSampler(0.1, x => Math.Log(normal.Density(x)),
                                                 (x,y) => npdf(x,y,03),
                                                 x => Normal.Sample(rnd,x,0.3), 10);     var arr = ms.Sample(N);
     return arr;
     //string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: " 
        + Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
        + beta.StdDev + " vs Sample StandardDeviation: "
        + Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
     //return result;
} [WebMethod(Description = "Sampling a normal variable via Metropolis asymmetric proposal")]
public double[] NormaViaMetropolisAsymmetricProposal(double mean, double stdev, int N)
{
    var rnd = new MersenneTwister();
    var normal = new Normal(mean, stdev);     var ms = new MetropolisHastingsSampler(0.1, x => Math.Log(normal.Density(x)),
         (xnew, x) => Math.Log(0.5 * Math.Exp(npdf(xnew,x, 0.3))
                        + 0.5 * Math.Exp(npdf(xnew, x+0.1, 0.3))),
               x => MixSample(x), 10);     var arr = ms.Sample(N);
     return arr;
     //string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: " 
        + Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
        + beta.StdDev + " vs Sample StandardDeviation: "
        + Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
     //return result;
} [WebMethod(Description = "Slice sampling a normal distributed random variable")]
public double[] NormaViaSliceSampling(double mean, double stdev, int N)
{
    var rnd = new MersenneTwister();
    var normal = new Normal(mean, stdev);     var ms = new UnivariateSliceSampler(0.1, x => npdfNoNormalized(x, mean, stdev), 5, 1.0);
    var arr = ms.Sample(N);
     return arr;
     //string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: " 
        + Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
        + beta.StdDev + " vs Sample StandardDeviation: "
        + Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
     //return result;
} public double npdf(double x, double m, double s)
{
    return -0.5 * (x - m) * (x - m) / (s * s) - 0.5 * Math.Log(2.0 * System.Math.PI * s * s);
} public double npdfNoNormalized(double x, double m, double s)
{
    return -0.5 * (x - m) * (x - m) / (s * s);
} public double MixSample(double x)
{
    var rnd = new MersenneTwister();
    if (Bernoulli.Sample(rnd, 0.5) == 1)
        return Normal.Sample(rnd, x, 0.3);
    else
        return Normal.Sample(rnd, x + 0.1, 0.3);
}
}

Original F# Code


// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//

#r "../../out/lib/Net40/MathNet.Numerics.dll"
#r "../../out/lib/Net40/MathNet.Numerics.FSharp.dll"

open MathNet.Numerics
open MathNet.Numerics.Random
open MathNet.Numerics.Statistics
open MathNet.Numerics.Distributions
open MathNet.Numerics.Statistics.Mcmc

/// The number of samples to gather for each sampler.
let N = 10000
/// The random number generator we use for the examples.
let rnd = new MersenneTwister()

//
// Example 1: Sampling a Beta distributed variable through rejection sampling.
//
// Target Distribution: Beta(2.7, 6.3)
//
// -----------------------------------------------------------------------------
do
printfn "Rejection Sampling Example"

/// The target distribution.
let beta = new Beta(2.7, 6.3)

/// Samples uniform distributed variables.
let uniform = new ContinuousUniform(0.0, 1.0, RandomSource = rnd)

/// Implements the rejection sampling procedure.
let rs = new RejectionSampler( ( fun x -> x**(beta.A-1.0) * (1.0 - x)**(beta.B-1.0) ),
( fun x -> 0.021 ),
( fun () -> uniform.Sample()) )

/// An array of samples from the rejection sampler.
let arr = rs.Sample(N)

/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) beta.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) beta.StdDev
printfn "\tAcceptance rate = %f" rs.AcceptanceRate
printfn ""

//
// Example 2: Sampling a normal distributed variable through Metropolis sampling.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------
do
printfn "Metropolis Sampling Example"

let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)

/// Implements the rejection sampling procedure.
let ms = new MetropolisSampler( 0.1, (fun x -> log(normal.Density(x))),
(fun x -> Normal.Sample(rnd, x, 0.3)), 20,
RandomSource = rnd )

/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)

/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""

//
// Example 3: Sampling a normal distributed variable through Metropolis-Hastings sampling
// with a symmetric proposal distribution.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Metropolis Hastings Sampling Example (Symmetric Proposal)"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)

/// Evaluates the log normal distribution.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s) - 0.5 * log(Constants.Pi2 * s * s)

/// Implements the rejection sampling procedure.
let ms = new MetropolisHastingsSampler( 0.1, (fun x -> log(normal.Density(x))),
(fun x y -> npdf x y 0.3), (fun x -> Normal.Sample(rnd, x, 0.3)), 10,
RandomSource = rnd )

/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)

/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""

//
// Example 4: Sampling a normal distributed variable through Metropolis-Hastings sampling
// with a asymmetric proposal distribution.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Metropolis Hastings Sampling Example (Assymetric Proposal)"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)

/// Evaluates the logarithm of the normal distribution function.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s) - 0.5 * log(Constants.Pi2 * s * s)

/// Samples from a mixture that is biased towards samples larger than x.
let mixSample x =
if Bernoulli.Sample(rnd, 0.5) = 1 then
Normal.Sample(rnd, x, 0.3)
else
Normal.Sample(rnd, x + 0.1, 0.3)

/// The transition kernel for the proposal above.
let krnl xnew x = log (0.5 * exp(npdf xnew x 0.3) + 0.5 * exp(npdf xnew (x+0.1) 0.3))

/// Implements the rejection sampling procedure.
let ms = new MetropolisHastingsSampler( 0.1, (fun x -> log(normal.Density(x))),
(fun xnew x -> krnl xnew x), (fun x -> mixSample x), 10,
RandomSource = rnd )

/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)

/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""

//
// Example 5: Slice sampling a normal distributed random variable.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Slice Sampling Example"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)

/// Evaluates the unnormalized logarithm of the normal distribution function.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s)

/// Implements the rejection sampling procedure.
let ms = new UnivariateSliceSampler( 0.1, (fun x -> npdf x mean stddev), 5, 1.0, RandomSource = rnd )

/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)

/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn ""

Markov Chain Monte Carlo Simulation using C# and MathNet的更多相关文章

  1. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

  2. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  3. 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)

    (学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...

  4. [Bayes] MCMC (Markov Chain Monte Carlo)

    不错的文章:LDA-math-MCMC 和 Gibbs Sampling 可作为精进MCMC抽样方法的学习材料. 简单概率分布的模拟 Box-Muller变换原理详解 本质上来说,计算机只能生产符合均 ...

  5. 为什么要用Markov chain Monte Carlo (MCMC)

    马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distrib ...

  6. 蒙特卡洛模拟(Monte Carlo simulation)

    1.蒙特卡罗模拟简介 蒙特卡罗模拟,也叫统计模拟,这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的,其基本思想很早以前就被人们所发现和利用.早在17世纪,人们就知道用事 ...

  7. History of Monte Carlo Methods - Part 1

    History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Ca ...

  8. Monte Carlo Approximations

    准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (M ...

  9. Introduction To Monte Carlo Methods

    Introduction To Monte Carlo Methods I’m going to keep this tutorial light on math, because the goal ...

随机推荐

  1. (63)通信协议之一json

    1.什么是JSON JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.它基于JavaScript的一个子集. JSON采用完全独立于语言的文本格式,但是也使 ...

  2. [design pattern](6) Absract Factory

    前言 在前面的章节中,我们先后介绍了简单工厂模式和工厂方法模式.他们都是工厂模式大家族的一员,那么,本章将会接着上一章,来说一说工厂模式的最后一员,那就是抽象工厂模式. 思考题 首先,来思考下下面的问 ...

  3. @WebService这个标签的作用是什么

    当实现 Web Service 时,@WebService 注释标记 Java 类:实现 Web Service 接口时,标记服务端点接口(SEI). (声明webservice服务) 要点: • 实 ...

  4. How do I add a simple onClick event handler to a canvas element?

    How do I add a simple onClick event handler to a canvas element? When you draw to a canvas element, ...

  5. ARM过程调用标准——APCS

    APCS(ARM Procedure Call Standard) 1.ARM寄存器 ARM核支持9种工作模式——User/System/Hyp+/SVC/Abort/Undefined/Monito ...

  6. leetcode 374. 猜数字大小(python)

    我们正在玩一个猜数字游戏. 游戏规则如下:我从 1 到 n 选择一个数字. 你需要猜我选择了哪个数字.每次你猜错了,我会告诉你这个数字是大了还是小了.你调用一个预先定义好的接口 guess(int n ...

  7. Jmeter之线程组(Stepping和Ultimate)

    jmeter自带的线程组比较简单,如果需要逐渐增加并发数的功能并不能实现,所以就需要使用Jmeter插件--Stepping Thread Group. 一.安装Stepping/UItimate T ...

  8. JVM监控工具之JProfiler

    一.简介 JProfiler是一款Java的性能监控工具.可以查看当前应用的对象.对象引用.内存.CPU使用情况,线程运行情况(阻塞.等待等),同时可以查找哪个对象占用的内存比较多.哪个对象占用CPU ...

  9. 2018.03.30 abap屏幕标签保存之前执行过的状态

    REPORT ZZJX_TEST09. *&---------------------------------------------------------------------* TAB ...

  10. spss中如何处理极端值、错误值

    spss中如何处理极端值.错误值 spss中录入数据以后,第一步不是去分析数据,而是要检验数据是不是有录入错误的,是不是有不合常理的数据,今天我们要做一个描述性统计,进而查看哪些数据是不合理的.下面是 ...